Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors

We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining Chiral Effective Field Theory ($\chi$EFT) and dispersion analysis. The spectral functions on the two-pion cut at $t > 4 M_\pi^2$ are constructed using the elastic unitarity relation and an $N/D$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. C 2018-05, Vol.97 (5), Article 055203
Hauptverfasser: Alarcón, J. M., Weiss, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physical review. C
container_volume 97
creator Alarcón, J. M.
Weiss, C.
description We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining Chiral Effective Field Theory ($\chi$EFT) and dispersion analysis. The spectral functions on the two-pion cut at $t > 4 M_\pi^2$ are constructed using the elastic unitarity relation and an $N/D$ representation. $\chi$EFT is used to calculate the real unctions $J_\pm^1 (t) = f_\pm^1(t)/F_\pi(t)$ (ratios of the complex $\pi\pi \rightarrow N \bar N$ partial-wave amplitudes and the timelike pion FF), which are free of $\pi\pi$ rescattering. Rescattering effects are included through the empirical timelike pion FF $|F_\pi(t)|^2$. The method allows us to compute the isovector EM spectral functions up to $t \sim 1$ GeV$^2$ with controlled accuracy (LO, NLO, and partial N2LO). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at $t = 0$ (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives with minimal uncertainties and explain their collective behavior. Finally, we estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-$Q^2$ FF data is achieved up to $\sim$0.5 GeV$^2$ for $G_E$, and up to $\sim$0.2 GeV$^2$ for $G_M$. Our results can be used to guide the analysis of low-$Q^2$ elastic scattering data and the extraction of the proton charge radius.
doi_str_mv 10.1103/PhysRevC.97.055203
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1436377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_97_055203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-7f6c2426a07a01642e315823d36c8903146324b5f4e3360ab9f2151e47c97e4e3</originalsourceid><addsrcrecordid>eNpVkE9LxDAUxIMouOh-AU_Be2v-NWmOsqy6sKiInkM2fbGRtlmSutBvb2VV8PSGN8Mw_BC6oqSklPCb53bKL3BYlVqVpKoY4SdowYTUhdaan_7pujpHy5w_CCFUEq0oWaD-8dN1EAfsY-qxt26MKeMw4CbkPaQcDtBNOPT7FA_QYNeGZDsM3oMbZw_7AF2DxxZimkq82ZR43c1Wir19H2AM7l_xJTrztsuw_LkX6O1u_bp6KLZP95vV7bZwnNZjobx0TDBpibLzVMGA06pmvOHS1ZpwKiRnYld5AZxLYnfaM1pREMppBfPzAl0fe2Meg8kujOBaF4dhnmao4JIrNYfYMeRSzDmBN_sUepsmQ4n5Bmt-wRqtzBEs_wKR323L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors</title><source>American Physical Society Journals</source><creator>Alarcón, J. M. ; Weiss, C.</creator><creatorcontrib>Alarcón, J. M. ; Weiss, C. ; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><description>We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining Chiral Effective Field Theory ($\chi$EFT) and dispersion analysis. The spectral functions on the two-pion cut at $t &gt; 4 M_\pi^2$ are constructed using the elastic unitarity relation and an $N/D$ representation. $\chi$EFT is used to calculate the real unctions $J_\pm^1 (t) = f_\pm^1(t)/F_\pi(t)$ (ratios of the complex $\pi\pi \rightarrow N \bar N$ partial-wave amplitudes and the timelike pion FF), which are free of $\pi\pi$ rescattering. Rescattering effects are included through the empirical timelike pion FF $|F_\pi(t)|^2$. The method allows us to compute the isovector EM spectral functions up to $t \sim 1$ GeV$^2$ with controlled accuracy (LO, NLO, and partial N2LO). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at $t = 0$ (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives with minimal uncertainties and explain their collective behavior. Finally, we estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-$Q^2$ FF data is achieved up to $\sim$0.5 GeV$^2$ for $G_E$, and up to $\sim$0.2 GeV$^2$ for $G_M$. Our results can be used to guide the analysis of low-$Q^2$ elastic scattering data and the extraction of the proton charge radius.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.97.055203</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Physical review. C, 2018-05, Vol.97 (5), Article 055203</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-7f6c2426a07a01642e315823d36c8903146324b5f4e3360ab9f2151e47c97e4e3</citedby><cites>FETCH-LOGICAL-c318t-7f6c2426a07a01642e315823d36c8903146324b5f4e3360ab9f2151e47c97e4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1436377$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alarcón, J. M.</creatorcontrib><creatorcontrib>Weiss, C.</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><title>Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors</title><title>Physical review. C</title><description>We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining Chiral Effective Field Theory ($\chi$EFT) and dispersion analysis. The spectral functions on the two-pion cut at $t &gt; 4 M_\pi^2$ are constructed using the elastic unitarity relation and an $N/D$ representation. $\chi$EFT is used to calculate the real unctions $J_\pm^1 (t) = f_\pm^1(t)/F_\pi(t)$ (ratios of the complex $\pi\pi \rightarrow N \bar N$ partial-wave amplitudes and the timelike pion FF), which are free of $\pi\pi$ rescattering. Rescattering effects are included through the empirical timelike pion FF $|F_\pi(t)|^2$. The method allows us to compute the isovector EM spectral functions up to $t \sim 1$ GeV$^2$ with controlled accuracy (LO, NLO, and partial N2LO). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at $t = 0$ (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives with minimal uncertainties and explain their collective behavior. Finally, we estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-$Q^2$ FF data is achieved up to $\sim$0.5 GeV$^2$ for $G_E$, and up to $\sim$0.2 GeV$^2$ for $G_M$. Our results can be used to guide the analysis of low-$Q^2$ elastic scattering data and the extraction of the proton charge radius.</description><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkE9LxDAUxIMouOh-AU_Be2v-NWmOsqy6sKiInkM2fbGRtlmSutBvb2VV8PSGN8Mw_BC6oqSklPCb53bKL3BYlVqVpKoY4SdowYTUhdaan_7pujpHy5w_CCFUEq0oWaD-8dN1EAfsY-qxt26MKeMw4CbkPaQcDtBNOPT7FA_QYNeGZDsM3oMbZw_7AF2DxxZimkq82ZR43c1Wir19H2AM7l_xJTrztsuw_LkX6O1u_bp6KLZP95vV7bZwnNZjobx0TDBpibLzVMGA06pmvOHS1ZpwKiRnYld5AZxLYnfaM1pREMppBfPzAl0fe2Meg8kujOBaF4dhnmao4JIrNYfYMeRSzDmBN_sUepsmQ4n5Bmt-wRqtzBEs_wKR323L</recordid><startdate>20180508</startdate><enddate>20180508</enddate><creator>Alarcón, J. M.</creator><creator>Weiss, C.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180508</creationdate><title>Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors</title><author>Alarcón, J. M. ; Weiss, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-7f6c2426a07a01642e315823d36c8903146324b5f4e3360ab9f2151e47c97e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alarcón, J. M.</creatorcontrib><creatorcontrib>Weiss, C.</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alarcón, J. M.</au><au>Weiss, C.</au><aucorp>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors</atitle><jtitle>Physical review. C</jtitle><date>2018-05-08</date><risdate>2018</risdate><volume>97</volume><issue>5</issue><artnum>055203</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining Chiral Effective Field Theory ($\chi$EFT) and dispersion analysis. The spectral functions on the two-pion cut at $t &gt; 4 M_\pi^2$ are constructed using the elastic unitarity relation and an $N/D$ representation. $\chi$EFT is used to calculate the real unctions $J_\pm^1 (t) = f_\pm^1(t)/F_\pi(t)$ (ratios of the complex $\pi\pi \rightarrow N \bar N$ partial-wave amplitudes and the timelike pion FF), which are free of $\pi\pi$ rescattering. Rescattering effects are included through the empirical timelike pion FF $|F_\pi(t)|^2$. The method allows us to compute the isovector EM spectral functions up to $t \sim 1$ GeV$^2$ with controlled accuracy (LO, NLO, and partial N2LO). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at $t = 0$ (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives with minimal uncertainties and explain their collective behavior. Finally, we estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-$Q^2$ FF data is achieved up to $\sim$0.5 GeV$^2$ for $G_E$, and up to $\sim$0.2 GeV$^2$ for $G_M$. Our results can be used to guide the analysis of low-$Q^2$ elastic scattering data and the extraction of the proton charge radius.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevC.97.055203</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9985
ispartof Physical review. C, 2018-05, Vol.97 (5), Article 055203
issn 2469-9985
2469-9993
language eng
recordid cdi_osti_scitechconnect_1436377
source American Physical Society Journals
subjects NUCLEAR PHYSICS AND RADIATION PHYSICS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
title Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleon%20form%20factors%20in%20dispersively%20improved%20chiral%20effective%20field%20theory.%20II.%20Electromagnetic%20form%20factors&rft.jtitle=Physical%20review.%20C&rft.au=Alarc%C3%B3n,%20J.%20M.&rft.aucorp=Thomas%20Jefferson%20National%20Accelerator%20Facility%20(TJNAF),%20Newport%20News,%20VA%20(United%20States)&rft.date=2018-05-08&rft.volume=97&rft.issue=5&rft.artnum=055203&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.97.055203&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_97_055203%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true