Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries

Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-02, Vol.12 (2), p.1500-1507
Hauptverfasser: Li, Guoxing, Huang, Qingquan, He, Xin, Gao, Yue, Wang, Daiwei, Kim, Seong H, Wang, Donghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1507
container_issue 2
container_start_page 1500
container_title ACS nano
container_volume 12
creator Li, Guoxing
Huang, Qingquan
He, Xin
Gao, Yue
Wang, Daiwei
Kim, Seong H
Wang, Donghai
description Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this work, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly­(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. This work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.
doi_str_mv 10.1021/acsnano.7b08035
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1435963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993017448</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-b70acbe5831b02f69b9d4708a56130a6cc44bd024374bb9e845ff916c0dcfcae3</originalsourceid><addsrcrecordid>eNp1kL1uFDEUhS0EImGhpkMWFRKa5Hrt-XEJEWEjLQIpINFZtueadTRjL7an2I534A15Eox2k47qnuI7R7ofIS8ZXDBYs0ttc9AhXvQGBuDtI3LOJO8aGLrvjx9yy87Is5zvANp-6Lun5Gwted9xDudkvMXJNdcxzTjSzcEkP9KbUDDtdzoj3eoDJhoD3fqy88tMP2HRE3Ux0Y3_sWu-YKp51sHiPfLn1-_bZXJLou91qUMe83PyxOkp44vTXZFv1x--Xm2a7eePN1fvto0WwEpjetDWYDtwZmDtOmnkKHoYdNsxDrqzVggzwlrwXhgjcRCtc5J1FkbrrEa-Iq-PuzEXr7L1Be3OxhDQFsUEb2V9ekXeHKF9ij8XzEXNPlucJh0wLlkxKTmwXoihopdH1KaYc0Kn9snPOh0UA_XPvzr5Vyf_tfHqNL6YavSBvxdegbdHoDbVXVxSqEL-O_cXwBeSVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993017448</pqid></control><display><type>article</type><title>Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries</title><source>ACS Publications</source><creator>Li, Guoxing ; Huang, Qingquan ; He, Xin ; Gao, Yue ; Wang, Daiwei ; Kim, Seong H ; Wang, Donghai</creator><creatorcontrib>Li, Guoxing ; Huang, Qingquan ; He, Xin ; Gao, Yue ; Wang, Daiwei ; Kim, Seong H ; Wang, Donghai ; Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><description>Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this work, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly­(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. This work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b08035</identifier><identifier>PMID: 29376330</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE ; ENGINEERING ; lithium metal anodes ; lithium organopolysulfides ; lithium organosulfides ; lithium-sulfur battery ; MATERIALS SCIENCE ; NANOSCIENCE AND NANOTECHNOLOGY ; solid-electrolyte interphase</subject><ispartof>ACS nano, 2018-02, Vol.12 (2), p.1500-1507</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-b70acbe5831b02f69b9d4708a56130a6cc44bd024374bb9e845ff916c0dcfcae3</citedby><cites>FETCH-LOGICAL-a401t-b70acbe5831b02f69b9d4708a56130a6cc44bd024374bb9e845ff916c0dcfcae3</cites><orcidid>0000-0001-7261-8510 ; 0000-0002-8575-7269 ; 0000-0002-4384-7063 ; 0000-0001-7559-1288 ; 0000000243847063 ; 0000000172618510 ; 0000000285757269 ; 0000000175591288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b08035$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b08035$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29376330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1435963$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Guoxing</creatorcontrib><creatorcontrib>Huang, Qingquan</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Wang, Daiwei</creatorcontrib><creatorcontrib>Kim, Seong H</creatorcontrib><creatorcontrib>Wang, Donghai</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><title>Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this work, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly­(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. This work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.</description><subject>ENERGY STORAGE</subject><subject>ENGINEERING</subject><subject>lithium metal anodes</subject><subject>lithium organopolysulfides</subject><subject>lithium organosulfides</subject><subject>lithium-sulfur battery</subject><subject>MATERIALS SCIENCE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>solid-electrolyte interphase</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1uFDEUhS0EImGhpkMWFRKa5Hrt-XEJEWEjLQIpINFZtueadTRjL7an2I534A15Eox2k47qnuI7R7ofIS8ZXDBYs0ttc9AhXvQGBuDtI3LOJO8aGLrvjx9yy87Is5zvANp-6Lun5Gwted9xDudkvMXJNdcxzTjSzcEkP9KbUDDtdzoj3eoDJhoD3fqy88tMP2HRE3Ux0Y3_sWu-YKp51sHiPfLn1-_bZXJLou91qUMe83PyxOkp44vTXZFv1x--Xm2a7eePN1fvto0WwEpjetDWYDtwZmDtOmnkKHoYdNsxDrqzVggzwlrwXhgjcRCtc5J1FkbrrEa-Iq-PuzEXr7L1Be3OxhDQFsUEb2V9ekXeHKF9ij8XzEXNPlucJh0wLlkxKTmwXoihopdH1KaYc0Kn9snPOh0UA_XPvzr5Vyf_tfHqNL6YavSBvxdegbdHoDbVXVxSqEL-O_cXwBeSVQ</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Li, Guoxing</creator><creator>Huang, Qingquan</creator><creator>He, Xin</creator><creator>Gao, Yue</creator><creator>Wang, Daiwei</creator><creator>Kim, Seong H</creator><creator>Wang, Donghai</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7261-8510</orcidid><orcidid>https://orcid.org/0000-0002-8575-7269</orcidid><orcidid>https://orcid.org/0000-0002-4384-7063</orcidid><orcidid>https://orcid.org/0000-0001-7559-1288</orcidid><orcidid>https://orcid.org/0000000243847063</orcidid><orcidid>https://orcid.org/0000000172618510</orcidid><orcidid>https://orcid.org/0000000285757269</orcidid><orcidid>https://orcid.org/0000000175591288</orcidid></search><sort><creationdate>20180227</creationdate><title>Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries</title><author>Li, Guoxing ; Huang, Qingquan ; He, Xin ; Gao, Yue ; Wang, Daiwei ; Kim, Seong H ; Wang, Donghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-b70acbe5831b02f69b9d4708a56130a6cc44bd024374bb9e845ff916c0dcfcae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ENERGY STORAGE</topic><topic>ENGINEERING</topic><topic>lithium metal anodes</topic><topic>lithium organopolysulfides</topic><topic>lithium organosulfides</topic><topic>lithium-sulfur battery</topic><topic>MATERIALS SCIENCE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>solid-electrolyte interphase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guoxing</creatorcontrib><creatorcontrib>Huang, Qingquan</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Wang, Daiwei</creatorcontrib><creatorcontrib>Kim, Seong H</creatorcontrib><creatorcontrib>Wang, Donghai</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guoxing</au><au>Huang, Qingquan</au><au>He, Xin</au><au>Gao, Yue</au><au>Wang, Daiwei</au><au>Kim, Seong H</au><au>Wang, Donghai</au><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-02-27</date><risdate>2018</risdate><volume>12</volume><issue>2</issue><spage>1500</spage><epage>1507</epage><pages>1500-1507</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this work, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly­(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. This work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29376330</pmid><doi>10.1021/acsnano.7b08035</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7261-8510</orcidid><orcidid>https://orcid.org/0000-0002-8575-7269</orcidid><orcidid>https://orcid.org/0000-0002-4384-7063</orcidid><orcidid>https://orcid.org/0000-0001-7559-1288</orcidid><orcidid>https://orcid.org/0000000243847063</orcidid><orcidid>https://orcid.org/0000000172618510</orcidid><orcidid>https://orcid.org/0000000285757269</orcidid><orcidid>https://orcid.org/0000000175591288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-02, Vol.12 (2), p.1500-1507
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1435963
source ACS Publications
subjects ENERGY STORAGE
ENGINEERING
lithium metal anodes
lithium organopolysulfides
lithium organosulfides
lithium-sulfur battery
MATERIALS SCIENCE
NANOSCIENCE AND NANOTECHNOLOGY
solid-electrolyte interphase
title Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Formed%20Hybrid%20Interphase%20Layer%20on%20Lithium%20Metal%20for%20High-Performance%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=ACS%20nano&rft.au=Li,%20Guoxing&rft.aucorp=Pennsylvania%20State%20Univ.,%20University%20Park,%20PA%20(United%20States)&rft.date=2018-02-27&rft.volume=12&rft.issue=2&rft.spage=1500&rft.epage=1507&rft.pages=1500-1507&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b08035&rft_dat=%3Cproquest_osti_%3E1993017448%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993017448&rft_id=info:pmid/29376330&rfr_iscdi=true