Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries
Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as...
Gespeichert in:
Veröffentlicht in: | ACS nano 2018-02, Vol.12 (2), p.1500-1507 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1507 |
---|---|
container_issue | 2 |
container_start_page | 1500 |
container_title | ACS nano |
container_volume | 12 |
creator | Li, Guoxing Huang, Qingquan He, Xin Gao, Yue Wang, Daiwei Kim, Seong H Wang, Donghai |
description | Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this work, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. This work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries. |
doi_str_mv | 10.1021/acsnano.7b08035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1435963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993017448</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-b70acbe5831b02f69b9d4708a56130a6cc44bd024374bb9e845ff916c0dcfcae3</originalsourceid><addsrcrecordid>eNp1kL1uFDEUhS0EImGhpkMWFRKa5Hrt-XEJEWEjLQIpINFZtueadTRjL7an2I534A15Eox2k47qnuI7R7ofIS8ZXDBYs0ttc9AhXvQGBuDtI3LOJO8aGLrvjx9yy87Is5zvANp-6Lun5Gwted9xDudkvMXJNdcxzTjSzcEkP9KbUDDtdzoj3eoDJhoD3fqy88tMP2HRE3Ux0Y3_sWu-YKp51sHiPfLn1-_bZXJLou91qUMe83PyxOkp44vTXZFv1x--Xm2a7eePN1fvto0WwEpjetDWYDtwZmDtOmnkKHoYdNsxDrqzVggzwlrwXhgjcRCtc5J1FkbrrEa-Iq-PuzEXr7L1Be3OxhDQFsUEb2V9ekXeHKF9ij8XzEXNPlucJh0wLlkxKTmwXoihopdH1KaYc0Kn9snPOh0UA_XPvzr5Vyf_tfHqNL6YavSBvxdegbdHoDbVXVxSqEL-O_cXwBeSVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993017448</pqid></control><display><type>article</type><title>Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries</title><source>ACS Publications</source><creator>Li, Guoxing ; Huang, Qingquan ; He, Xin ; Gao, Yue ; Wang, Daiwei ; Kim, Seong H ; Wang, Donghai</creator><creatorcontrib>Li, Guoxing ; Huang, Qingquan ; He, Xin ; Gao, Yue ; Wang, Daiwei ; Kim, Seong H ; Wang, Donghai ; Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><description>Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this work, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. This work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b08035</identifier><identifier>PMID: 29376330</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE ; ENGINEERING ; lithium metal anodes ; lithium organopolysulfides ; lithium organosulfides ; lithium-sulfur battery ; MATERIALS SCIENCE ; NANOSCIENCE AND NANOTECHNOLOGY ; solid-electrolyte interphase</subject><ispartof>ACS nano, 2018-02, Vol.12 (2), p.1500-1507</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-b70acbe5831b02f69b9d4708a56130a6cc44bd024374bb9e845ff916c0dcfcae3</citedby><cites>FETCH-LOGICAL-a401t-b70acbe5831b02f69b9d4708a56130a6cc44bd024374bb9e845ff916c0dcfcae3</cites><orcidid>0000-0001-7261-8510 ; 0000-0002-8575-7269 ; 0000-0002-4384-7063 ; 0000-0001-7559-1288 ; 0000000243847063 ; 0000000172618510 ; 0000000285757269 ; 0000000175591288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b08035$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b08035$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29376330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1435963$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Guoxing</creatorcontrib><creatorcontrib>Huang, Qingquan</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Wang, Daiwei</creatorcontrib><creatorcontrib>Kim, Seong H</creatorcontrib><creatorcontrib>Wang, Donghai</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><title>Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this work, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. This work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.</description><subject>ENERGY STORAGE</subject><subject>ENGINEERING</subject><subject>lithium metal anodes</subject><subject>lithium organopolysulfides</subject><subject>lithium organosulfides</subject><subject>lithium-sulfur battery</subject><subject>MATERIALS SCIENCE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>solid-electrolyte interphase</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1uFDEUhS0EImGhpkMWFRKa5Hrt-XEJEWEjLQIpINFZtueadTRjL7an2I534A15Eox2k47qnuI7R7ofIS8ZXDBYs0ttc9AhXvQGBuDtI3LOJO8aGLrvjx9yy87Is5zvANp-6Lun5Gwted9xDudkvMXJNdcxzTjSzcEkP9KbUDDtdzoj3eoDJhoD3fqy88tMP2HRE3Ux0Y3_sWu-YKp51sHiPfLn1-_bZXJLou91qUMe83PyxOkp44vTXZFv1x--Xm2a7eePN1fvto0WwEpjetDWYDtwZmDtOmnkKHoYdNsxDrqzVggzwlrwXhgjcRCtc5J1FkbrrEa-Iq-PuzEXr7L1Be3OxhDQFsUEb2V9ekXeHKF9ij8XzEXNPlucJh0wLlkxKTmwXoihopdH1KaYc0Kn9snPOh0UA_XPvzr5Vyf_tfHqNL6YavSBvxdegbdHoDbVXVxSqEL-O_cXwBeSVQ</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Li, Guoxing</creator><creator>Huang, Qingquan</creator><creator>He, Xin</creator><creator>Gao, Yue</creator><creator>Wang, Daiwei</creator><creator>Kim, Seong H</creator><creator>Wang, Donghai</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7261-8510</orcidid><orcidid>https://orcid.org/0000-0002-8575-7269</orcidid><orcidid>https://orcid.org/0000-0002-4384-7063</orcidid><orcidid>https://orcid.org/0000-0001-7559-1288</orcidid><orcidid>https://orcid.org/0000000243847063</orcidid><orcidid>https://orcid.org/0000000172618510</orcidid><orcidid>https://orcid.org/0000000285757269</orcidid><orcidid>https://orcid.org/0000000175591288</orcidid></search><sort><creationdate>20180227</creationdate><title>Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries</title><author>Li, Guoxing ; Huang, Qingquan ; He, Xin ; Gao, Yue ; Wang, Daiwei ; Kim, Seong H ; Wang, Donghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-b70acbe5831b02f69b9d4708a56130a6cc44bd024374bb9e845ff916c0dcfcae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ENERGY STORAGE</topic><topic>ENGINEERING</topic><topic>lithium metal anodes</topic><topic>lithium organopolysulfides</topic><topic>lithium organosulfides</topic><topic>lithium-sulfur battery</topic><topic>MATERIALS SCIENCE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>solid-electrolyte interphase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guoxing</creatorcontrib><creatorcontrib>Huang, Qingquan</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Wang, Daiwei</creatorcontrib><creatorcontrib>Kim, Seong H</creatorcontrib><creatorcontrib>Wang, Donghai</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guoxing</au><au>Huang, Qingquan</au><au>He, Xin</au><au>Gao, Yue</au><au>Wang, Daiwei</au><au>Kim, Seong H</au><au>Wang, Donghai</au><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-02-27</date><risdate>2018</risdate><volume>12</volume><issue>2</issue><spage>1500</spage><epage>1507</epage><pages>1500-1507</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this work, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. This work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29376330</pmid><doi>10.1021/acsnano.7b08035</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7261-8510</orcidid><orcidid>https://orcid.org/0000-0002-8575-7269</orcidid><orcidid>https://orcid.org/0000-0002-4384-7063</orcidid><orcidid>https://orcid.org/0000-0001-7559-1288</orcidid><orcidid>https://orcid.org/0000000243847063</orcidid><orcidid>https://orcid.org/0000000172618510</orcidid><orcidid>https://orcid.org/0000000285757269</orcidid><orcidid>https://orcid.org/0000000175591288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2018-02, Vol.12 (2), p.1500-1507 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1435963 |
source | ACS Publications |
subjects | ENERGY STORAGE ENGINEERING lithium metal anodes lithium organopolysulfides lithium organosulfides lithium-sulfur battery MATERIALS SCIENCE NANOSCIENCE AND NANOTECHNOLOGY solid-electrolyte interphase |
title | Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Formed%20Hybrid%20Interphase%20Layer%20on%20Lithium%20Metal%20for%20High-Performance%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=ACS%20nano&rft.au=Li,%20Guoxing&rft.aucorp=Pennsylvania%20State%20Univ.,%20University%20Park,%20PA%20(United%20States)&rft.date=2018-02-27&rft.volume=12&rft.issue=2&rft.spage=1500&rft.epage=1507&rft.pages=1500-1507&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b08035&rft_dat=%3Cproquest_osti_%3E1993017448%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993017448&rft_id=info:pmid/29376330&rfr_iscdi=true |