Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement

Small 3D perturbations to the magnetic field in DIII-D ( δB/B∼2×10−4) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2018-05, Vol.25 (5)
Hauptverfasser: Wilcox, R. S., Rhodes, T. L., Shafer, M. W., Sugiyama, L. E., Ferraro, N. M., Lyons, B. C., McKee, G. R., Paz-Soldan, C., Wingen, A., Zeng, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of plasmas
container_volume 25
creator Wilcox, R. S.
Rhodes, T. L.
Shafer, M. W.
Sugiyama, L. E.
Ferraro, N. M.
Lyons, B. C.
McKee, G. R.
Paz-Soldan, C.
Wingen, A.
Zeng, L.
description Small 3D perturbations to the magnetic field in DIII-D ( δB/B∼2×10−4) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.
doi_str_mv 10.1063/1.5024378
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1435203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-393f9b6bc38e6b0f42f92a953378c8a1a58819e6370e37101a010e029c5a03893</originalsourceid><addsrcrecordid>eNqdkM1OwzAQhC0EEqVw4A0sbiClrOPESY6o_BSpEheQuEWus1ZNEzuK3aK-AM9N0lTizmn38M3szhByzWDGQPB7NkshTniWn5AJg7yIMpElp8OeQSRE8nlOLrz_AoBEpPmE_CywNkrWdCc7I4NxljpNK7TehD1tO6dNjZ5KW1Fdb1XYHhhPjaVhjTS4jWzkhrZYoQ-9zbcJayrbtjZYUf5ItcG6GvWmaYdTo167jipntbHYoA2X5EzL2uPVcU7Jx_PT-3wRLd9eXucPy0hxwULEC66LlVgpnqNYgU5iXcSySHkfWOWSyTTPWYGCZ4A8Y8AkMECIC5VK4HnBp-Rm9HU-mNIrE1Ct-z8sqlCyhKcx8B66HSHVOe871GXbmUZ2-5JBObRcsvLYcs_ejezgdcj2P3jnuj-wbCvNfwE8x4xs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wilcox, R. S. ; Rhodes, T. L. ; Shafer, M. W. ; Sugiyama, L. E. ; Ferraro, N. M. ; Lyons, B. C. ; McKee, G. R. ; Paz-Soldan, C. ; Wingen, A. ; Zeng, L.</creator><creatorcontrib>Wilcox, R. S. ; Rhodes, T. L. ; Shafer, M. W. ; Sugiyama, L. E. ; Ferraro, N. M. ; Lyons, B. C. ; McKee, G. R. ; Paz-Soldan, C. ; Wingen, A. ; Zeng, L. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; General Atomics, San Diego, CA (United States) ; Univ. of California, Los Angeles, CA (United States) ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States) ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>Small 3D perturbations to the magnetic field in DIII-D ( δB/B∼2×10−4) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5024378</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; computer science and technology ; deformation ; diamagnetism ; hydrodynamics ; plasma confinement ; plasma flows ; thermodynamic processes ; tokamaks ; turbulence simulations ; turbulent flows</subject><ispartof>Physics of plasmas, 2018-05, Vol.25 (5)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-393f9b6bc38e6b0f42f92a953378c8a1a58819e6370e37101a010e029c5a03893</citedby><cites>FETCH-LOGICAL-c361t-393f9b6bc38e6b0f42f92a953378c8a1a58819e6370e37101a010e029c5a03893</cites><orcidid>0000-0003-3232-1581 ; 0000-0002-6348-7827 ; 0000-0002-2902-6680 ; 0000-0003-1369-1739 ; 0000-0001-5069-4934 ; 0000000150694934 ; 0000000332321581 ; 0000000263487827 ; 0000000229026680 ; 0000000313691739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5024378$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1435203$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilcox, R. S.</creatorcontrib><creatorcontrib>Rhodes, T. L.</creatorcontrib><creatorcontrib>Shafer, M. W.</creatorcontrib><creatorcontrib>Sugiyama, L. E.</creatorcontrib><creatorcontrib>Ferraro, N. M.</creatorcontrib><creatorcontrib>Lyons, B. C.</creatorcontrib><creatorcontrib>McKee, G. R.</creatorcontrib><creatorcontrib>Paz-Soldan, C.</creatorcontrib><creatorcontrib>Wingen, A.</creatorcontrib><creatorcontrib>Zeng, L.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement</title><title>Physics of plasmas</title><description>Small 3D perturbations to the magnetic field in DIII-D ( δB/B∼2×10−4) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>computer science and technology</subject><subject>deformation</subject><subject>diamagnetism</subject><subject>hydrodynamics</subject><subject>plasma confinement</subject><subject>plasma flows</subject><subject>thermodynamic processes</subject><subject>tokamaks</subject><subject>turbulence simulations</subject><subject>turbulent flows</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkM1OwzAQhC0EEqVw4A0sbiClrOPESY6o_BSpEheQuEWus1ZNEzuK3aK-AM9N0lTizmn38M3szhByzWDGQPB7NkshTniWn5AJg7yIMpElp8OeQSRE8nlOLrz_AoBEpPmE_CywNkrWdCc7I4NxljpNK7TehD1tO6dNjZ5KW1Fdb1XYHhhPjaVhjTS4jWzkhrZYoQ-9zbcJayrbtjZYUf5ItcG6GvWmaYdTo167jipntbHYoA2X5EzL2uPVcU7Jx_PT-3wRLd9eXucPy0hxwULEC66LlVgpnqNYgU5iXcSySHkfWOWSyTTPWYGCZ4A8Y8AkMECIC5VK4HnBp-Rm9HU-mNIrE1Ct-z8sqlCyhKcx8B66HSHVOe871GXbmUZ2-5JBObRcsvLYcs_ejezgdcj2P3jnuj-wbCvNfwE8x4xs</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Wilcox, R. S.</creator><creator>Rhodes, T. L.</creator><creator>Shafer, M. W.</creator><creator>Sugiyama, L. E.</creator><creator>Ferraro, N. M.</creator><creator>Lyons, B. C.</creator><creator>McKee, G. R.</creator><creator>Paz-Soldan, C.</creator><creator>Wingen, A.</creator><creator>Zeng, L.</creator><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3232-1581</orcidid><orcidid>https://orcid.org/0000-0002-6348-7827</orcidid><orcidid>https://orcid.org/0000-0002-2902-6680</orcidid><orcidid>https://orcid.org/0000-0003-1369-1739</orcidid><orcidid>https://orcid.org/0000-0001-5069-4934</orcidid><orcidid>https://orcid.org/0000000150694934</orcidid><orcidid>https://orcid.org/0000000332321581</orcidid><orcidid>https://orcid.org/0000000263487827</orcidid><orcidid>https://orcid.org/0000000229026680</orcidid><orcidid>https://orcid.org/0000000313691739</orcidid></search><sort><creationdate>20180501</creationdate><title>Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement</title><author>Wilcox, R. S. ; Rhodes, T. L. ; Shafer, M. W. ; Sugiyama, L. E. ; Ferraro, N. M. ; Lyons, B. C. ; McKee, G. R. ; Paz-Soldan, C. ; Wingen, A. ; Zeng, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-393f9b6bc38e6b0f42f92a953378c8a1a58819e6370e37101a010e029c5a03893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>computer science and technology</topic><topic>deformation</topic><topic>diamagnetism</topic><topic>hydrodynamics</topic><topic>plasma confinement</topic><topic>plasma flows</topic><topic>thermodynamic processes</topic><topic>tokamaks</topic><topic>turbulence simulations</topic><topic>turbulent flows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilcox, R. S.</creatorcontrib><creatorcontrib>Rhodes, T. L.</creatorcontrib><creatorcontrib>Shafer, M. W.</creatorcontrib><creatorcontrib>Sugiyama, L. E.</creatorcontrib><creatorcontrib>Ferraro, N. M.</creatorcontrib><creatorcontrib>Lyons, B. C.</creatorcontrib><creatorcontrib>McKee, G. R.</creatorcontrib><creatorcontrib>Paz-Soldan, C.</creatorcontrib><creatorcontrib>Wingen, A.</creatorcontrib><creatorcontrib>Zeng, L.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilcox, R. S.</au><au>Rhodes, T. L.</au><au>Shafer, M. W.</au><au>Sugiyama, L. E.</au><au>Ferraro, N. M.</au><au>Lyons, B. C.</au><au>McKee, G. R.</au><au>Paz-Soldan, C.</au><au>Wingen, A.</au><au>Zeng, L.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>General Atomics, San Diego, CA (United States)</aucorp><aucorp>Univ. of California, Los Angeles, CA (United States)</aucorp><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement</atitle><jtitle>Physics of plasmas</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>25</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Small 3D perturbations to the magnetic field in DIII-D ( δB/B∼2×10−4) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><doi>10.1063/1.5024378</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3232-1581</orcidid><orcidid>https://orcid.org/0000-0002-6348-7827</orcidid><orcidid>https://orcid.org/0000-0002-2902-6680</orcidid><orcidid>https://orcid.org/0000-0003-1369-1739</orcidid><orcidid>https://orcid.org/0000-0001-5069-4934</orcidid><orcidid>https://orcid.org/0000000150694934</orcidid><orcidid>https://orcid.org/0000000332321581</orcidid><orcidid>https://orcid.org/0000000263487827</orcidid><orcidid>https://orcid.org/0000000229026680</orcidid><orcidid>https://orcid.org/0000000313691739</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2018-05, Vol.25 (5)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1435203
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
computer science and technology
deformation
diamagnetism
hydrodynamics
plasma confinement
plasma flows
thermodynamic processes
tokamaks
turbulence simulations
turbulent flows
title Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helical%20variation%20of%20density%20profiles%20and%20fluctuations%20in%20the%20tokamak%20pedestal%20with%20applied%203D%20fields%20and%20implications%20for%20confinement&rft.jtitle=Physics%20of%20plasmas&rft.au=Wilcox,%20R.%20S.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-05-01&rft.volume=25&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5024378&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true