Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction

The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-04, Vol.356 (6333), p.54-59
Hauptverfasser: Attar, Andrew R., Bhattacherjee, Aditi, Pemmaraju, C. D., Schnorr, Kirsten, Closser, Kristina D., Prendergast, David, Leone, Stephen R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 6333
container_start_page 54
container_title Science (American Association for the Advancement of Science)
container_volume 356
creator Attar, Andrew R.
Bhattacherjee, Aditi
Pemmaraju, C. D.
Schnorr, Kirsten
Closser, Kristina D.
Prendergast, David
Leone, Stephen R.
description The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a table-top apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.
doi_str_mv 10.1126/science.aaj2198
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1434356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24918158</jstor_id><sourcerecordid>24918158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-9f04eacddf893d64fb134e96b6cad2c5e1e70379386ba806af2e96a62eb970ab3</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYMouq6ePSlFL166Js1Hk6MsrgqCFz2HNJ1ql25Sky7Y_97orgpePA3M-83wZh5CJwTPCCnEVbQtOAszY5YFUXIHTQhWPFcFprtogjEVucQlP0CHMS4xTpqi--igkFQKjMUE3S1gNfgI1rs6e8-DGbPYgx2Cj9b3Y-abzLgMuq-WHW3X2iy07iX3PbhUswDGDq13R2ivMV2E422doufFzdP8Ln94vL2fXz_klnMy5KrBLE3UdSMVrQVrKkIZKFEJa-rCciBQYlqq5K8yEgvTFEk1ooBKldhUdIrON3t9HFqd7h_Avib3LjnUhFFGuUjQ5Qbqg39bQxz0qo0Wus448OuoicKsIEIR8j8qJVeclbxM6MUfdOnXwaVrPymmlBSKJupqQ9n0wxig0X1oVyaMmmD9GZrehqa3oaWJs-3edbWC-of_TikBpxtgGQcffnWmiCRc0g_WdJ3f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884998693</pqid></control><display><type>article</type><title>Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Attar, Andrew R. ; Bhattacherjee, Aditi ; Pemmaraju, C. D. ; Schnorr, Kirsten ; Closser, Kristina D. ; Prendergast, David ; Leone, Stephen R.</creator><creatorcontrib>Attar, Andrew R. ; Bhattacherjee, Aditi ; Pemmaraju, C. D. ; Schnorr, Kirsten ; Closser, Kristina D. ; Prendergast, David ; Leone, Stephen R.</creatorcontrib><description>The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a table-top apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaj2198</identifier><identifier>PMID: 28386006</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Absorption spectra ; Carbon ; Chemical bonds ; Density functional theory ; Electron states ; Electronic structure ; Electronics ; Energy levels ; Femtosecond ; Isomerization ; Organic chemistry ; Photochemical reactions ; Photoexcitation ; Ring opening ; Simulation ; Soft X ray spectroscopy ; Soft x rays ; Spectroscopy ; Spectrum analysis ; Time constant ; Time dependence ; X ray absorption ; X rays ; X-ray spectroscopy</subject><ispartof>Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6333), p.54-59</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-9f04eacddf893d64fb134e96b6cad2c5e1e70379386ba806af2e96a62eb970ab3</citedby><cites>FETCH-LOGICAL-c551t-9f04eacddf893d64fb134e96b6cad2c5e1e70379386ba806af2e96a62eb970ab3</cites><orcidid>0000-0002-5519-440X ; 0000-0002-9016-7044 ; 0000-0003-0598-1453 ; 0000-0002-9509-3857 ; 0000-0001-7146-1128 ; 0000-0003-1819-1338 ; 0000000305981453 ; 0000000318191338 ; 0000000295093857 ; 0000000290167044 ; 0000000171461128 ; 000000025519440X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24918158$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24918158$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28386006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1434356$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Attar, Andrew R.</creatorcontrib><creatorcontrib>Bhattacherjee, Aditi</creatorcontrib><creatorcontrib>Pemmaraju, C. D.</creatorcontrib><creatorcontrib>Schnorr, Kirsten</creatorcontrib><creatorcontrib>Closser, Kristina D.</creatorcontrib><creatorcontrib>Prendergast, David</creatorcontrib><creatorcontrib>Leone, Stephen R.</creatorcontrib><title>Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a table-top apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.</description><subject>Absorption spectra</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Density functional theory</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Electronics</subject><subject>Energy levels</subject><subject>Femtosecond</subject><subject>Isomerization</subject><subject>Organic chemistry</subject><subject>Photochemical reactions</subject><subject>Photoexcitation</subject><subject>Ring opening</subject><subject>Simulation</subject><subject>Soft X ray spectroscopy</subject><subject>Soft x rays</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Time constant</subject><subject>Time dependence</subject><subject>X ray absorption</subject><subject>X rays</subject><subject>X-ray spectroscopy</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LxDAQxYMouq6ePSlFL166Js1Hk6MsrgqCFz2HNJ1ql25Sky7Y_97orgpePA3M-83wZh5CJwTPCCnEVbQtOAszY5YFUXIHTQhWPFcFprtogjEVucQlP0CHMS4xTpqi--igkFQKjMUE3S1gNfgI1rs6e8-DGbPYgx2Cj9b3Y-abzLgMuq-WHW3X2iy07iX3PbhUswDGDq13R2ivMV2E422doufFzdP8Ln94vL2fXz_klnMy5KrBLE3UdSMVrQVrKkIZKFEJa-rCciBQYlqq5K8yEgvTFEk1ooBKldhUdIrON3t9HFqd7h_Avib3LjnUhFFGuUjQ5Qbqg39bQxz0qo0Wus448OuoicKsIEIR8j8qJVeclbxM6MUfdOnXwaVrPymmlBSKJupqQ9n0wxig0X1oVyaMmmD9GZrehqa3oaWJs-3edbWC-of_TikBpxtgGQcffnWmiCRc0g_WdJ3f</recordid><startdate>20170407</startdate><enddate>20170407</enddate><creator>Attar, Andrew R.</creator><creator>Bhattacherjee, Aditi</creator><creator>Pemmaraju, C. D.</creator><creator>Schnorr, Kirsten</creator><creator>Closser, Kristina D.</creator><creator>Prendergast, David</creator><creator>Leone, Stephen R.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5519-440X</orcidid><orcidid>https://orcid.org/0000-0002-9016-7044</orcidid><orcidid>https://orcid.org/0000-0003-0598-1453</orcidid><orcidid>https://orcid.org/0000-0002-9509-3857</orcidid><orcidid>https://orcid.org/0000-0001-7146-1128</orcidid><orcidid>https://orcid.org/0000-0003-1819-1338</orcidid><orcidid>https://orcid.org/0000000305981453</orcidid><orcidid>https://orcid.org/0000000318191338</orcidid><orcidid>https://orcid.org/0000000295093857</orcidid><orcidid>https://orcid.org/0000000290167044</orcidid><orcidid>https://orcid.org/0000000171461128</orcidid><orcidid>https://orcid.org/000000025519440X</orcidid></search><sort><creationdate>20170407</creationdate><title>Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction</title><author>Attar, Andrew R. ; Bhattacherjee, Aditi ; Pemmaraju, C. D. ; Schnorr, Kirsten ; Closser, Kristina D. ; Prendergast, David ; Leone, Stephen R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-9f04eacddf893d64fb134e96b6cad2c5e1e70379386ba806af2e96a62eb970ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption spectra</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Density functional theory</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Electronics</topic><topic>Energy levels</topic><topic>Femtosecond</topic><topic>Isomerization</topic><topic>Organic chemistry</topic><topic>Photochemical reactions</topic><topic>Photoexcitation</topic><topic>Ring opening</topic><topic>Simulation</topic><topic>Soft X ray spectroscopy</topic><topic>Soft x rays</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Time constant</topic><topic>Time dependence</topic><topic>X ray absorption</topic><topic>X rays</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attar, Andrew R.</creatorcontrib><creatorcontrib>Bhattacherjee, Aditi</creatorcontrib><creatorcontrib>Pemmaraju, C. D.</creatorcontrib><creatorcontrib>Schnorr, Kirsten</creatorcontrib><creatorcontrib>Closser, Kristina D.</creatorcontrib><creatorcontrib>Prendergast, David</creatorcontrib><creatorcontrib>Leone, Stephen R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attar, Andrew R.</au><au>Bhattacherjee, Aditi</au><au>Pemmaraju, C. D.</au><au>Schnorr, Kirsten</au><au>Closser, Kristina D.</au><au>Prendergast, David</au><au>Leone, Stephen R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-04-07</date><risdate>2017</risdate><volume>356</volume><issue>6333</issue><spage>54</spage><epage>59</epage><pages>54-59</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a table-top apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28386006</pmid><doi>10.1126/science.aaj2198</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5519-440X</orcidid><orcidid>https://orcid.org/0000-0002-9016-7044</orcidid><orcidid>https://orcid.org/0000-0003-0598-1453</orcidid><orcidid>https://orcid.org/0000-0002-9509-3857</orcidid><orcidid>https://orcid.org/0000-0001-7146-1128</orcidid><orcidid>https://orcid.org/0000-0003-1819-1338</orcidid><orcidid>https://orcid.org/0000000305981453</orcidid><orcidid>https://orcid.org/0000000318191338</orcidid><orcidid>https://orcid.org/0000000295093857</orcidid><orcidid>https://orcid.org/0000000290167044</orcidid><orcidid>https://orcid.org/0000000171461128</orcidid><orcidid>https://orcid.org/000000025519440X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6333), p.54-59
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1434356
source JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Absorption spectra
Carbon
Chemical bonds
Density functional theory
Electron states
Electronic structure
Electronics
Energy levels
Femtosecond
Isomerization
Organic chemistry
Photochemical reactions
Photoexcitation
Ring opening
Simulation
Soft X ray spectroscopy
Soft x rays
Spectroscopy
Spectrum analysis
Time constant
Time dependence
X ray absorption
X rays
X-ray spectroscopy
title Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtosecond%20x-ray%20spectroscopy%20of%20an%20electrocyclic%20ring-opening%20reaction&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Attar,%20Andrew%20R.&rft.date=2017-04-07&rft.volume=356&rft.issue=6333&rft.spage=54&rft.epage=59&rft.pages=54-59&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaj2198&rft_dat=%3Cjstor_osti_%3E24918158%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884998693&rft_id=info:pmid/28386006&rft_jstor_id=24918158&rfr_iscdi=true