Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction
The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-04, Vol.356 (6333), p.54-59 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 6333 |
container_start_page | 54 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 356 |
creator | Attar, Andrew R. Bhattacherjee, Aditi Pemmaraju, C. D. Schnorr, Kirsten Closser, Kristina D. Prendergast, David Leone, Stephen R. |
description | The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a table-top apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs. |
doi_str_mv | 10.1126/science.aaj2198 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1434356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24918158</jstor_id><sourcerecordid>24918158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-9f04eacddf893d64fb134e96b6cad2c5e1e70379386ba806af2e96a62eb970ab3</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYMouq6ePSlFL166Js1Hk6MsrgqCFz2HNJ1ql25Sky7Y_97orgpePA3M-83wZh5CJwTPCCnEVbQtOAszY5YFUXIHTQhWPFcFprtogjEVucQlP0CHMS4xTpqi--igkFQKjMUE3S1gNfgI1rs6e8-DGbPYgx2Cj9b3Y-abzLgMuq-WHW3X2iy07iX3PbhUswDGDq13R2ivMV2E422doufFzdP8Ln94vL2fXz_klnMy5KrBLE3UdSMVrQVrKkIZKFEJa-rCciBQYlqq5K8yEgvTFEk1ooBKldhUdIrON3t9HFqd7h_Avib3LjnUhFFGuUjQ5Qbqg39bQxz0qo0Wus448OuoicKsIEIR8j8qJVeclbxM6MUfdOnXwaVrPymmlBSKJupqQ9n0wxig0X1oVyaMmmD9GZrehqa3oaWJs-3edbWC-of_TikBpxtgGQcffnWmiCRc0g_WdJ3f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884998693</pqid></control><display><type>article</type><title>Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Attar, Andrew R. ; Bhattacherjee, Aditi ; Pemmaraju, C. D. ; Schnorr, Kirsten ; Closser, Kristina D. ; Prendergast, David ; Leone, Stephen R.</creator><creatorcontrib>Attar, Andrew R. ; Bhattacherjee, Aditi ; Pemmaraju, C. D. ; Schnorr, Kirsten ; Closser, Kristina D. ; Prendergast, David ; Leone, Stephen R.</creatorcontrib><description>The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a table-top apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaj2198</identifier><identifier>PMID: 28386006</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Absorption spectra ; Carbon ; Chemical bonds ; Density functional theory ; Electron states ; Electronic structure ; Electronics ; Energy levels ; Femtosecond ; Isomerization ; Organic chemistry ; Photochemical reactions ; Photoexcitation ; Ring opening ; Simulation ; Soft X ray spectroscopy ; Soft x rays ; Spectroscopy ; Spectrum analysis ; Time constant ; Time dependence ; X ray absorption ; X rays ; X-ray spectroscopy</subject><ispartof>Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6333), p.54-59</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-9f04eacddf893d64fb134e96b6cad2c5e1e70379386ba806af2e96a62eb970ab3</citedby><cites>FETCH-LOGICAL-c551t-9f04eacddf893d64fb134e96b6cad2c5e1e70379386ba806af2e96a62eb970ab3</cites><orcidid>0000-0002-5519-440X ; 0000-0002-9016-7044 ; 0000-0003-0598-1453 ; 0000-0002-9509-3857 ; 0000-0001-7146-1128 ; 0000-0003-1819-1338 ; 0000000305981453 ; 0000000318191338 ; 0000000295093857 ; 0000000290167044 ; 0000000171461128 ; 000000025519440X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24918158$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24918158$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28386006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1434356$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Attar, Andrew R.</creatorcontrib><creatorcontrib>Bhattacherjee, Aditi</creatorcontrib><creatorcontrib>Pemmaraju, C. D.</creatorcontrib><creatorcontrib>Schnorr, Kirsten</creatorcontrib><creatorcontrib>Closser, Kristina D.</creatorcontrib><creatorcontrib>Prendergast, David</creatorcontrib><creatorcontrib>Leone, Stephen R.</creatorcontrib><title>Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a table-top apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.</description><subject>Absorption spectra</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Density functional theory</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Electronics</subject><subject>Energy levels</subject><subject>Femtosecond</subject><subject>Isomerization</subject><subject>Organic chemistry</subject><subject>Photochemical reactions</subject><subject>Photoexcitation</subject><subject>Ring opening</subject><subject>Simulation</subject><subject>Soft X ray spectroscopy</subject><subject>Soft x rays</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Time constant</subject><subject>Time dependence</subject><subject>X ray absorption</subject><subject>X rays</subject><subject>X-ray spectroscopy</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LxDAQxYMouq6ePSlFL166Js1Hk6MsrgqCFz2HNJ1ql25Sky7Y_97orgpePA3M-83wZh5CJwTPCCnEVbQtOAszY5YFUXIHTQhWPFcFprtogjEVucQlP0CHMS4xTpqi--igkFQKjMUE3S1gNfgI1rs6e8-DGbPYgx2Cj9b3Y-abzLgMuq-WHW3X2iy07iX3PbhUswDGDq13R2ivMV2E422doufFzdP8Ln94vL2fXz_klnMy5KrBLE3UdSMVrQVrKkIZKFEJa-rCciBQYlqq5K8yEgvTFEk1ooBKldhUdIrON3t9HFqd7h_Avib3LjnUhFFGuUjQ5Qbqg39bQxz0qo0Wus448OuoicKsIEIR8j8qJVeclbxM6MUfdOnXwaVrPymmlBSKJupqQ9n0wxig0X1oVyaMmmD9GZrehqa3oaWJs-3edbWC-of_TikBpxtgGQcffnWmiCRc0g_WdJ3f</recordid><startdate>20170407</startdate><enddate>20170407</enddate><creator>Attar, Andrew R.</creator><creator>Bhattacherjee, Aditi</creator><creator>Pemmaraju, C. D.</creator><creator>Schnorr, Kirsten</creator><creator>Closser, Kristina D.</creator><creator>Prendergast, David</creator><creator>Leone, Stephen R.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5519-440X</orcidid><orcidid>https://orcid.org/0000-0002-9016-7044</orcidid><orcidid>https://orcid.org/0000-0003-0598-1453</orcidid><orcidid>https://orcid.org/0000-0002-9509-3857</orcidid><orcidid>https://orcid.org/0000-0001-7146-1128</orcidid><orcidid>https://orcid.org/0000-0003-1819-1338</orcidid><orcidid>https://orcid.org/0000000305981453</orcidid><orcidid>https://orcid.org/0000000318191338</orcidid><orcidid>https://orcid.org/0000000295093857</orcidid><orcidid>https://orcid.org/0000000290167044</orcidid><orcidid>https://orcid.org/0000000171461128</orcidid><orcidid>https://orcid.org/000000025519440X</orcidid></search><sort><creationdate>20170407</creationdate><title>Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction</title><author>Attar, Andrew R. ; Bhattacherjee, Aditi ; Pemmaraju, C. D. ; Schnorr, Kirsten ; Closser, Kristina D. ; Prendergast, David ; Leone, Stephen R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-9f04eacddf893d64fb134e96b6cad2c5e1e70379386ba806af2e96a62eb970ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption spectra</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Density functional theory</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Electronics</topic><topic>Energy levels</topic><topic>Femtosecond</topic><topic>Isomerization</topic><topic>Organic chemistry</topic><topic>Photochemical reactions</topic><topic>Photoexcitation</topic><topic>Ring opening</topic><topic>Simulation</topic><topic>Soft X ray spectroscopy</topic><topic>Soft x rays</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Time constant</topic><topic>Time dependence</topic><topic>X ray absorption</topic><topic>X rays</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attar, Andrew R.</creatorcontrib><creatorcontrib>Bhattacherjee, Aditi</creatorcontrib><creatorcontrib>Pemmaraju, C. D.</creatorcontrib><creatorcontrib>Schnorr, Kirsten</creatorcontrib><creatorcontrib>Closser, Kristina D.</creatorcontrib><creatorcontrib>Prendergast, David</creatorcontrib><creatorcontrib>Leone, Stephen R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attar, Andrew R.</au><au>Bhattacherjee, Aditi</au><au>Pemmaraju, C. D.</au><au>Schnorr, Kirsten</au><au>Closser, Kristina D.</au><au>Prendergast, David</au><au>Leone, Stephen R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-04-07</date><risdate>2017</risdate><volume>356</volume><issue>6333</issue><spage>54</spage><epage>59</epage><pages>54-59</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a table-top apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28386006</pmid><doi>10.1126/science.aaj2198</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5519-440X</orcidid><orcidid>https://orcid.org/0000-0002-9016-7044</orcidid><orcidid>https://orcid.org/0000-0003-0598-1453</orcidid><orcidid>https://orcid.org/0000-0002-9509-3857</orcidid><orcidid>https://orcid.org/0000-0001-7146-1128</orcidid><orcidid>https://orcid.org/0000-0003-1819-1338</orcidid><orcidid>https://orcid.org/0000000305981453</orcidid><orcidid>https://orcid.org/0000000318191338</orcidid><orcidid>https://orcid.org/0000000295093857</orcidid><orcidid>https://orcid.org/0000000290167044</orcidid><orcidid>https://orcid.org/0000000171461128</orcidid><orcidid>https://orcid.org/000000025519440X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6333), p.54-59 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1434356 |
source | JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science |
subjects | Absorption spectra Carbon Chemical bonds Density functional theory Electron states Electronic structure Electronics Energy levels Femtosecond Isomerization Organic chemistry Photochemical reactions Photoexcitation Ring opening Simulation Soft X ray spectroscopy Soft x rays Spectroscopy Spectrum analysis Time constant Time dependence X ray absorption X rays X-ray spectroscopy |
title | Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtosecond%20x-ray%20spectroscopy%20of%20an%20electrocyclic%20ring-opening%20reaction&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Attar,%20Andrew%20R.&rft.date=2017-04-07&rft.volume=356&rft.issue=6333&rft.spage=54&rft.epage=59&rft.pages=54-59&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaj2198&rft_dat=%3Cjstor_osti_%3E24918158%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884998693&rft_id=info:pmid/28386006&rft_jstor_id=24918158&rfr_iscdi=true |