Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range
•Addresses flow in tubes with strong heating rates at low turbulent Reynolds numbers.•Aims to explain why local Nu varies roughly as square of decreasing local Re.•Hypothesis: caused by thermal boundary layer within growing “laminar” layer.•DNS demonstrates laminar Leveque similarity analysis reason...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2018-06, Vol.121 (C), p.1118-1124 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1124 |
---|---|
container_issue | C |
container_start_page | 1118 |
container_title | International journal of heat and mass transfer |
container_volume | 121 |
creator | McEligot, Donald M. Chu, Xu Skifton, Richard S. Laurien, Eckart |
description | •Addresses flow in tubes with strong heating rates at low turbulent Reynolds numbers.•Aims to explain why local Nu varies roughly as square of decreasing local Re.•Hypothesis: caused by thermal boundary layer within growing “laminar” layer.•DNS demonstrates laminar Leveque similarity analysis reasonable.•Improves basic understanding of “relaminarization” due to heating gases.
For internal vertical gas flow in tubes with strong heating rates at low turbulent Reynolds numbers, a typical experimental observation is that the local Nusselt number varies roughly as the square of the decreasing local Reynolds number. An aim of the present note is to examine this situation. This examination leads to the hypothesis that the behavior results from the evolution of the thermal boundary layer developing within the primarily molecular transport layer which is also growing from the wall. Comparisons to direct numerical simulations demonstrate that reasonable predictions are provided by an extension of the Leveque similarity analysis for laminar thermal boundary layers. The present observations modify and improve our fundamental understanding of the process called “relaminarization” in these flows. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2017.12.086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1434302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931017335986</els_id><sourcerecordid>2065061049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-2e358490ab9c87d9540ed6b231a9437e63238a46ff6d3830c98785919e2b7ae83</originalsourceid><addsrcrecordid>eNqNkMtu1DAUhi0EEkPhHSzYsEnwLY69A1VcWlVCQrBiYTnOScdRxi62M6i7Pgi8XJ8ER1NWbFhZ1vnOp_P_CL2mpKWEyjdz6-c92HKwOZdkQ54gtYzQvqWsJUo-Qjuqet0wqvRjtCN10mhOyVP0LOd5-xIhd-j7RSiQgl2wi-EIrvgj4M2L_0pxifjaZsjYB1z2gJf4s_kCtyEuY27Cehgqc3_3q6xpWBcI5f7uN6671_AcPZnskuHFw3uGvn14__X8U3P1-ePF-burxomuKw0D3imhiR20U_2oO0FglAPj1GrBe5CccWWFnCY5csWJ06pXnaYa2NBbUPwMvTx5Yy7eZOcLuH2NE2ocQwUXnLAKvTpBNyn-WCEXM8d1C54NI7IjkhKhK_X2RLkUc04wmZvkDzbdGkrM1ruZzb-9m613Q5mpvVfF5UkBNfLR12m9CIKD0aftoDH6_5f9AQUCmik</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065061049</pqid></control><display><type>article</type><title>Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range</title><source>Elsevier ScienceDirect Journals Complete</source><creator>McEligot, Donald M. ; Chu, Xu ; Skifton, Richard S. ; Laurien, Eckart</creator><creatorcontrib>McEligot, Donald M. ; Chu, Xu ; Skifton, Richard S. ; Laurien, Eckart ; Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><description>•Addresses flow in tubes with strong heating rates at low turbulent Reynolds numbers.•Aims to explain why local Nu varies roughly as square of decreasing local Re.•Hypothesis: caused by thermal boundary layer within growing “laminar” layer.•DNS demonstrates laminar Leveque similarity analysis reasonable.•Improves basic understanding of “relaminarization” due to heating gases.
For internal vertical gas flow in tubes with strong heating rates at low turbulent Reynolds numbers, a typical experimental observation is that the local Nusselt number varies roughly as the square of the decreasing local Reynolds number. An aim of the present note is to examine this situation. This examination leads to the hypothesis that the behavior results from the evolution of the thermal boundary layer developing within the primarily molecular transport layer which is also growing from the wall. Comparisons to direct numerical simulations demonstrate that reasonable predictions are provided by an extension of the Leveque similarity analysis for laminar thermal boundary layers. The present observations modify and improve our fundamental understanding of the process called “relaminarization” in these flows.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2017.12.086</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boundary layer ; Computational fluid dynamics ; Computer simulation ; Convective heat transfer ; Fluid flow ; Gas flow ; Gas property variation ; GENERAL AND MISCELLANEOUS ; Heat transfer ; Heating ; Internal convective heat transfer ; Laminar boundary layer ; Laminarization ; Low-Reynolds-number turbulent ; Molecular chains ; Reverse transition ; Reynolds number ; Thermal boundary layer ; Tubes ; Vertical tubes</subject><ispartof>International journal of heat and mass transfer, 2018-06, Vol.121 (C), p.1118-1124</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-2e358490ab9c87d9540ed6b231a9437e63238a46ff6d3830c98785919e2b7ae83</citedby><cites>FETCH-LOGICAL-c455t-2e358490ab9c87d9540ed6b231a9437e63238a46ff6d3830c98785919e2b7ae83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.12.086$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1434302$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McEligot, Donald M.</creatorcontrib><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Skifton, Richard S.</creatorcontrib><creatorcontrib>Laurien, Eckart</creatorcontrib><creatorcontrib>Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><title>Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range</title><title>International journal of heat and mass transfer</title><description>•Addresses flow in tubes with strong heating rates at low turbulent Reynolds numbers.•Aims to explain why local Nu varies roughly as square of decreasing local Re.•Hypothesis: caused by thermal boundary layer within growing “laminar” layer.•DNS demonstrates laminar Leveque similarity analysis reasonable.•Improves basic understanding of “relaminarization” due to heating gases.
For internal vertical gas flow in tubes with strong heating rates at low turbulent Reynolds numbers, a typical experimental observation is that the local Nusselt number varies roughly as the square of the decreasing local Reynolds number. An aim of the present note is to examine this situation. This examination leads to the hypothesis that the behavior results from the evolution of the thermal boundary layer developing within the primarily molecular transport layer which is also growing from the wall. Comparisons to direct numerical simulations demonstrate that reasonable predictions are provided by an extension of the Leveque similarity analysis for laminar thermal boundary layers. The present observations modify and improve our fundamental understanding of the process called “relaminarization” in these flows.</description><subject>Boundary layer</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convective heat transfer</subject><subject>Fluid flow</subject><subject>Gas flow</subject><subject>Gas property variation</subject><subject>GENERAL AND MISCELLANEOUS</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Internal convective heat transfer</subject><subject>Laminar boundary layer</subject><subject>Laminarization</subject><subject>Low-Reynolds-number turbulent</subject><subject>Molecular chains</subject><subject>Reverse transition</subject><subject>Reynolds number</subject><subject>Thermal boundary layer</subject><subject>Tubes</subject><subject>Vertical tubes</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkMtu1DAUhi0EEkPhHSzYsEnwLY69A1VcWlVCQrBiYTnOScdRxi62M6i7Pgi8XJ8ER1NWbFhZ1vnOp_P_CL2mpKWEyjdz6-c92HKwOZdkQ54gtYzQvqWsJUo-Qjuqet0wqvRjtCN10mhOyVP0LOd5-xIhd-j7RSiQgl2wi-EIrvgj4M2L_0pxifjaZsjYB1z2gJf4s_kCtyEuY27Cehgqc3_3q6xpWBcI5f7uN6671_AcPZnskuHFw3uGvn14__X8U3P1-ePF-burxomuKw0D3imhiR20U_2oO0FglAPj1GrBe5CccWWFnCY5csWJ06pXnaYa2NBbUPwMvTx5Yy7eZOcLuH2NE2ocQwUXnLAKvTpBNyn-WCEXM8d1C54NI7IjkhKhK_X2RLkUc04wmZvkDzbdGkrM1ruZzb-9m613Q5mpvVfF5UkBNfLR12m9CIKD0aftoDH6_5f9AQUCmik</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>McEligot, Donald M.</creator><creator>Chu, Xu</creator><creator>Skifton, Richard S.</creator><creator>Laurien, Eckart</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180601</creationdate><title>Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range</title><author>McEligot, Donald M. ; Chu, Xu ; Skifton, Richard S. ; Laurien, Eckart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-2e358490ab9c87d9540ed6b231a9437e63238a46ff6d3830c98785919e2b7ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary layer</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convective heat transfer</topic><topic>Fluid flow</topic><topic>Gas flow</topic><topic>Gas property variation</topic><topic>GENERAL AND MISCELLANEOUS</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Internal convective heat transfer</topic><topic>Laminar boundary layer</topic><topic>Laminarization</topic><topic>Low-Reynolds-number turbulent</topic><topic>Molecular chains</topic><topic>Reverse transition</topic><topic>Reynolds number</topic><topic>Thermal boundary layer</topic><topic>Tubes</topic><topic>Vertical tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McEligot, Donald M.</creatorcontrib><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Skifton, Richard S.</creatorcontrib><creatorcontrib>Laurien, Eckart</creatorcontrib><creatorcontrib>Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McEligot, Donald M.</au><au>Chu, Xu</au><au>Skifton, Richard S.</au><au>Laurien, Eckart</au><aucorp>Idaho National Lab. (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>121</volume><issue>C</issue><spage>1118</spage><epage>1124</epage><pages>1118-1124</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Addresses flow in tubes with strong heating rates at low turbulent Reynolds numbers.•Aims to explain why local Nu varies roughly as square of decreasing local Re.•Hypothesis: caused by thermal boundary layer within growing “laminar” layer.•DNS demonstrates laminar Leveque similarity analysis reasonable.•Improves basic understanding of “relaminarization” due to heating gases.
For internal vertical gas flow in tubes with strong heating rates at low turbulent Reynolds numbers, a typical experimental observation is that the local Nusselt number varies roughly as the square of the decreasing local Reynolds number. An aim of the present note is to examine this situation. This examination leads to the hypothesis that the behavior results from the evolution of the thermal boundary layer developing within the primarily molecular transport layer which is also growing from the wall. Comparisons to direct numerical simulations demonstrate that reasonable predictions are provided by an extension of the Leveque similarity analysis for laminar thermal boundary layers. The present observations modify and improve our fundamental understanding of the process called “relaminarization” in these flows.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2017.12.086</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2018-06, Vol.121 (C), p.1118-1124 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_osti_scitechconnect_1434302 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Boundary layer Computational fluid dynamics Computer simulation Convective heat transfer Fluid flow Gas flow Gas property variation GENERAL AND MISCELLANEOUS Heat transfer Heating Internal convective heat transfer Laminar boundary layer Laminarization Low-Reynolds-number turbulent Molecular chains Reverse transition Reynolds number Thermal boundary layer Tubes Vertical tubes |
title | Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20convective%20heat%20transfer%20to%20gases%20in%20the%20low-Reynolds-number%20%E2%80%9Cturbulent%E2%80%9D%20range&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=McEligot,%20Donald%20M.&rft.aucorp=Idaho%20National%20Lab.%20(INL),%20Idaho%20Falls,%20ID%20(United%20States)&rft.date=2018-06-01&rft.volume=121&rft.issue=C&rft.spage=1118&rft.epage=1124&rft.pages=1118-1124&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2017.12.086&rft_dat=%3Cproquest_osti_%3E2065061049%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065061049&rft_id=info:pmid/&rft_els_id=S0017931017335986&rfr_iscdi=true |