Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range

•Addresses flow in tubes with strong heating rates at low turbulent Reynolds numbers.•Aims to explain why local Nu varies roughly as square of decreasing local Re.•Hypothesis: caused by thermal boundary layer within growing “laminar” layer.•DNS demonstrates laminar Leveque similarity analysis reason...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2018-06, Vol.121 (C), p.1118-1124
Hauptverfasser: McEligot, Donald M., Chu, Xu, Skifton, Richard S., Laurien, Eckart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1124
container_issue C
container_start_page 1118
container_title International journal of heat and mass transfer
container_volume 121
creator McEligot, Donald M.
Chu, Xu
Skifton, Richard S.
Laurien, Eckart
description •Addresses flow in tubes with strong heating rates at low turbulent Reynolds numbers.•Aims to explain why local Nu varies roughly as square of decreasing local Re.•Hypothesis: caused by thermal boundary layer within growing “laminar” layer.•DNS demonstrates laminar Leveque similarity analysis reasonable.•Improves basic understanding of “relaminarization” due to heating gases. For internal vertical gas flow in tubes with strong heating rates at low turbulent Reynolds numbers, a typical experimental observation is that the local Nusselt number varies roughly as the square of the decreasing local Reynolds number. An aim of the present note is to examine this situation. This examination leads to the hypothesis that the behavior results from the evolution of the thermal boundary layer developing within the primarily molecular transport layer which is also growing from the wall. Comparisons to direct numerical simulations demonstrate that reasonable predictions are provided by an extension of the Leveque similarity analysis for laminar thermal boundary layers. The present observations modify and improve our fundamental understanding of the process called “relaminarization” in these flows.
doi_str_mv 10.1016/j.ijheatmasstransfer.2017.12.086
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1434302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931017335986</els_id><sourcerecordid>2065061049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-2e358490ab9c87d9540ed6b231a9437e63238a46ff6d3830c98785919e2b7ae83</originalsourceid><addsrcrecordid>eNqNkMtu1DAUhi0EEkPhHSzYsEnwLY69A1VcWlVCQrBiYTnOScdRxi62M6i7Pgi8XJ8ER1NWbFhZ1vnOp_P_CL2mpKWEyjdz6-c92HKwOZdkQ54gtYzQvqWsJUo-Qjuqet0wqvRjtCN10mhOyVP0LOd5-xIhd-j7RSiQgl2wi-EIrvgj4M2L_0pxifjaZsjYB1z2gJf4s_kCtyEuY27Cehgqc3_3q6xpWBcI5f7uN6671_AcPZnskuHFw3uGvn14__X8U3P1-ePF-burxomuKw0D3imhiR20U_2oO0FglAPj1GrBe5CccWWFnCY5csWJ06pXnaYa2NBbUPwMvTx5Yy7eZOcLuH2NE2ocQwUXnLAKvTpBNyn-WCEXM8d1C54NI7IjkhKhK_X2RLkUc04wmZvkDzbdGkrM1ruZzb-9m613Q5mpvVfF5UkBNfLR12m9CIKD0aftoDH6_5f9AQUCmik</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065061049</pqid></control><display><type>article</type><title>Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range</title><source>Elsevier ScienceDirect Journals Complete</source><creator>McEligot, Donald M. ; Chu, Xu ; Skifton, Richard S. ; Laurien, Eckart</creator><creatorcontrib>McEligot, Donald M. ; Chu, Xu ; Skifton, Richard S. ; Laurien, Eckart ; Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><description>•Addresses flow in tubes with strong heating rates at low turbulent Reynolds numbers.•Aims to explain why local Nu varies roughly as square of decreasing local Re.•Hypothesis: caused by thermal boundary layer within growing “laminar” layer.•DNS demonstrates laminar Leveque similarity analysis reasonable.•Improves basic understanding of “relaminarization” due to heating gases. For internal vertical gas flow in tubes with strong heating rates at low turbulent Reynolds numbers, a typical experimental observation is that the local Nusselt number varies roughly as the square of the decreasing local Reynolds number. An aim of the present note is to examine this situation. This examination leads to the hypothesis that the behavior results from the evolution of the thermal boundary layer developing within the primarily molecular transport layer which is also growing from the wall. Comparisons to direct numerical simulations demonstrate that reasonable predictions are provided by an extension of the Leveque similarity analysis for laminar thermal boundary layers. The present observations modify and improve our fundamental understanding of the process called “relaminarization” in these flows.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2017.12.086</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boundary layer ; Computational fluid dynamics ; Computer simulation ; Convective heat transfer ; Fluid flow ; Gas flow ; Gas property variation ; GENERAL AND MISCELLANEOUS ; Heat transfer ; Heating ; Internal convective heat transfer ; Laminar boundary layer ; Laminarization ; Low-Reynolds-number turbulent ; Molecular chains ; Reverse transition ; Reynolds number ; Thermal boundary layer ; Tubes ; Vertical tubes</subject><ispartof>International journal of heat and mass transfer, 2018-06, Vol.121 (C), p.1118-1124</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-2e358490ab9c87d9540ed6b231a9437e63238a46ff6d3830c98785919e2b7ae83</citedby><cites>FETCH-LOGICAL-c455t-2e358490ab9c87d9540ed6b231a9437e63238a46ff6d3830c98785919e2b7ae83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.12.086$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1434302$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McEligot, Donald M.</creatorcontrib><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Skifton, Richard S.</creatorcontrib><creatorcontrib>Laurien, Eckart</creatorcontrib><creatorcontrib>Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><title>Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range</title><title>International journal of heat and mass transfer</title><description>•Addresses flow in tubes with strong heating rates at low turbulent Reynolds numbers.•Aims to explain why local Nu varies roughly as square of decreasing local Re.•Hypothesis: caused by thermal boundary layer within growing “laminar” layer.•DNS demonstrates laminar Leveque similarity analysis reasonable.•Improves basic understanding of “relaminarization” due to heating gases. For internal vertical gas flow in tubes with strong heating rates at low turbulent Reynolds numbers, a typical experimental observation is that the local Nusselt number varies roughly as the square of the decreasing local Reynolds number. An aim of the present note is to examine this situation. This examination leads to the hypothesis that the behavior results from the evolution of the thermal boundary layer developing within the primarily molecular transport layer which is also growing from the wall. Comparisons to direct numerical simulations demonstrate that reasonable predictions are provided by an extension of the Leveque similarity analysis for laminar thermal boundary layers. The present observations modify and improve our fundamental understanding of the process called “relaminarization” in these flows.</description><subject>Boundary layer</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convective heat transfer</subject><subject>Fluid flow</subject><subject>Gas flow</subject><subject>Gas property variation</subject><subject>GENERAL AND MISCELLANEOUS</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Internal convective heat transfer</subject><subject>Laminar boundary layer</subject><subject>Laminarization</subject><subject>Low-Reynolds-number turbulent</subject><subject>Molecular chains</subject><subject>Reverse transition</subject><subject>Reynolds number</subject><subject>Thermal boundary layer</subject><subject>Tubes</subject><subject>Vertical tubes</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkMtu1DAUhi0EEkPhHSzYsEnwLY69A1VcWlVCQrBiYTnOScdRxi62M6i7Pgi8XJ8ER1NWbFhZ1vnOp_P_CL2mpKWEyjdz6-c92HKwOZdkQ54gtYzQvqWsJUo-Qjuqet0wqvRjtCN10mhOyVP0LOd5-xIhd-j7RSiQgl2wi-EIrvgj4M2L_0pxifjaZsjYB1z2gJf4s_kCtyEuY27Cehgqc3_3q6xpWBcI5f7uN6671_AcPZnskuHFw3uGvn14__X8U3P1-ePF-burxomuKw0D3imhiR20U_2oO0FglAPj1GrBe5CccWWFnCY5csWJ06pXnaYa2NBbUPwMvTx5Yy7eZOcLuH2NE2ocQwUXnLAKvTpBNyn-WCEXM8d1C54NI7IjkhKhK_X2RLkUc04wmZvkDzbdGkrM1ruZzb-9m613Q5mpvVfF5UkBNfLR12m9CIKD0aftoDH6_5f9AQUCmik</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>McEligot, Donald M.</creator><creator>Chu, Xu</creator><creator>Skifton, Richard S.</creator><creator>Laurien, Eckart</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180601</creationdate><title>Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range</title><author>McEligot, Donald M. ; Chu, Xu ; Skifton, Richard S. ; Laurien, Eckart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-2e358490ab9c87d9540ed6b231a9437e63238a46ff6d3830c98785919e2b7ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary layer</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convective heat transfer</topic><topic>Fluid flow</topic><topic>Gas flow</topic><topic>Gas property variation</topic><topic>GENERAL AND MISCELLANEOUS</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Internal convective heat transfer</topic><topic>Laminar boundary layer</topic><topic>Laminarization</topic><topic>Low-Reynolds-number turbulent</topic><topic>Molecular chains</topic><topic>Reverse transition</topic><topic>Reynolds number</topic><topic>Thermal boundary layer</topic><topic>Tubes</topic><topic>Vertical tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McEligot, Donald M.</creatorcontrib><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Skifton, Richard S.</creatorcontrib><creatorcontrib>Laurien, Eckart</creatorcontrib><creatorcontrib>Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McEligot, Donald M.</au><au>Chu, Xu</au><au>Skifton, Richard S.</au><au>Laurien, Eckart</au><aucorp>Idaho National Lab. (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>121</volume><issue>C</issue><spage>1118</spage><epage>1124</epage><pages>1118-1124</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Addresses flow in tubes with strong heating rates at low turbulent Reynolds numbers.•Aims to explain why local Nu varies roughly as square of decreasing local Re.•Hypothesis: caused by thermal boundary layer within growing “laminar” layer.•DNS demonstrates laminar Leveque similarity analysis reasonable.•Improves basic understanding of “relaminarization” due to heating gases. For internal vertical gas flow in tubes with strong heating rates at low turbulent Reynolds numbers, a typical experimental observation is that the local Nusselt number varies roughly as the square of the decreasing local Reynolds number. An aim of the present note is to examine this situation. This examination leads to the hypothesis that the behavior results from the evolution of the thermal boundary layer developing within the primarily molecular transport layer which is also growing from the wall. Comparisons to direct numerical simulations demonstrate that reasonable predictions are provided by an extension of the Leveque similarity analysis for laminar thermal boundary layers. The present observations modify and improve our fundamental understanding of the process called “relaminarization” in these flows.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2017.12.086</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2018-06, Vol.121 (C), p.1118-1124
issn 0017-9310
1879-2189
language eng
recordid cdi_osti_scitechconnect_1434302
source Elsevier ScienceDirect Journals Complete
subjects Boundary layer
Computational fluid dynamics
Computer simulation
Convective heat transfer
Fluid flow
Gas flow
Gas property variation
GENERAL AND MISCELLANEOUS
Heat transfer
Heating
Internal convective heat transfer
Laminar boundary layer
Laminarization
Low-Reynolds-number turbulent
Molecular chains
Reverse transition
Reynolds number
Thermal boundary layer
Tubes
Vertical tubes
title Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20convective%20heat%20transfer%20to%20gases%20in%20the%20low-Reynolds-number%20%E2%80%9Cturbulent%E2%80%9D%20range&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=McEligot,%20Donald%20M.&rft.aucorp=Idaho%20National%20Lab.%20(INL),%20Idaho%20Falls,%20ID%20(United%20States)&rft.date=2018-06-01&rft.volume=121&rft.issue=C&rft.spage=1118&rft.epage=1124&rft.pages=1118-1124&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2017.12.086&rft_dat=%3Cproquest_osti_%3E2065061049%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065061049&rft_id=info:pmid/&rft_els_id=S0017931017335986&rfr_iscdi=true