Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques
Transition metal sulfides are promising high-capacity anode materials for sodium ion batteries in terms of the conversion reaction with multiple electron transfers. Nonetheless, some inherent challenges such as sluggish sodium ion diffusion kinetics, large volume change and poor cycle stability limi...
Gespeichert in:
Veröffentlicht in: | Nano energy 2018-01, Vol.43 (C), p.184-191 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | C |
container_start_page | 184 |
container_title | Nano energy |
container_volume | 43 |
creator | Wang, Liguang Wang, Jiajun Guo, Fangmin Ma, Lu Ren, Yang Wu, Tianpin Zuo, Pengjian Yin, Geping Wang, Jun |
description | Transition metal sulfides are promising high-capacity anode materials for sodium ion batteries in terms of the conversion reaction with multiple electron transfers. Nonetheless, some inherent challenges such as sluggish sodium ion diffusion kinetics, large volume change and poor cycle stability limit their implementation. Addressing these issues necessitates a comprehensive understanding on the complex sodium ion storage mechanism especially at the initial cycle. Here, taking nickel subsulfide as a model material, we reveal the complicated conversion reaction mechanism upon the first cycle by combining in operando 2D transmission X-ray microscopy with X-ray absorption spectroscopy, ex-situ 3D nano-tomography, high-energy X-ray diffraction and electrochemical impedance spectroscopy. This study demonstrates that the microstructure evolution, inherent slow sodium ion diffusion kinetics, and slow ion mobility at the two-phase interface contribute to the high irreversible capacity upon the first cycle. Such understandings are critical for developing the conversion reaction materials with the desired electrochemical activity and stability.
The reaction mechanism of the nickel subsulfide during the initial cycling is revealed by in operando transmission X-ray microscopy and high-energy synchrotron X-ray diffraction techniques combined with X-ray absorption spectroscopy, electrochemical impedance spectroscopy and 3D nano-tomography characterization. This study provides comprehensive understanding of the irreversibility of metal sulfides during the initial cycling for sodium ion batteries. [Display omitted]
•The irreversible conversion of Ni3S2 during the initial cycling is elucidated.•In operando 2D TXM-XANES and 3D nano-tomography reveal the reaction mechanism.•Structural evolution of Ni3S2 is confirmed by in operando HEXRD and ex-situ XAS.•The correlation of the sodiation process with reaction kinetics is revealed. |
doi_str_mv | 10.1016/j.nanoen.2017.11.029 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1433998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211285517307097</els_id><sourcerecordid>S2211285517307097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-4784bcf64d01f53b054caddea27fb72dde58a58bd570625023f04d59a6b59483</originalsourceid><addsrcrecordid>eNp9kEtrwzAQhH1ooSHNP-hB9G5Xki0_LoUS-oJAL-lZyNKq2eBIqaQE-u8rk567l12Y2Y9hiuKO0YpR1j7sK6ecB1dxyrqKsYry4apYcM5YyXshbopVjHuapxWsY3xRTJ_OQIhJOYPui6QdEHSYUE0EQ4Bz1nDECdMP8ZYcIGUhniaLBiKxPpDoDZ4OJXpHRpUSBMzCGRXxRwiZ6kkCvXP4fYJ4W1xbNUVY_e1lsX153q7fys3H6_v6aVPquhtS2XR9M2rbNoYyK-qRikYrY0Dxzo4dz5folehHIzrackF5bWljxKDaUQxNXy-L-wvWx4QyapwTaO8c6CRZU9fDMJuai0kHH2MAK48BDyr8SEblXKbcy0uZci5TMiZzmfnt8fIGOf8ZIcx8cBoMhhlvPP4P-AXDrIPu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques</title><source>Alma/SFX Local Collection</source><creator>Wang, Liguang ; Wang, Jiajun ; Guo, Fangmin ; Ma, Lu ; Ren, Yang ; Wu, Tianpin ; Zuo, Pengjian ; Yin, Geping ; Wang, Jun</creator><creatorcontrib>Wang, Liguang ; Wang, Jiajun ; Guo, Fangmin ; Ma, Lu ; Ren, Yang ; Wu, Tianpin ; Zuo, Pengjian ; Yin, Geping ; Wang, Jun ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Transition metal sulfides are promising high-capacity anode materials for sodium ion batteries in terms of the conversion reaction with multiple electron transfers. Nonetheless, some inherent challenges such as sluggish sodium ion diffusion kinetics, large volume change and poor cycle stability limit their implementation. Addressing these issues necessitates a comprehensive understanding on the complex sodium ion storage mechanism especially at the initial cycle. Here, taking nickel subsulfide as a model material, we reveal the complicated conversion reaction mechanism upon the first cycle by combining in operando 2D transmission X-ray microscopy with X-ray absorption spectroscopy, ex-situ 3D nano-tomography, high-energy X-ray diffraction and electrochemical impedance spectroscopy. This study demonstrates that the microstructure evolution, inherent slow sodium ion diffusion kinetics, and slow ion mobility at the two-phase interface contribute to the high irreversible capacity upon the first cycle. Such understandings are critical for developing the conversion reaction materials with the desired electrochemical activity and stability.
The reaction mechanism of the nickel subsulfide during the initial cycling is revealed by in operando transmission X-ray microscopy and high-energy synchrotron X-ray diffraction techniques combined with X-ray absorption spectroscopy, electrochemical impedance spectroscopy and 3D nano-tomography characterization. This study provides comprehensive understanding of the irreversibility of metal sulfides during the initial cycling for sodium ion batteries. [Display omitted]
•The irreversible conversion of Ni3S2 during the initial cycling is elucidated.•In operando 2D TXM-XANES and 3D nano-tomography reveal the reaction mechanism.•Structural evolution of Ni3S2 is confirmed by in operando HEXRD and ex-situ XAS.•The correlation of the sodiation process with reaction kinetics is revealed.</description><identifier>ISSN: 2211-2855</identifier><identifier>DOI: 10.1016/j.nanoen.2017.11.029</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Conversion mechanism ; ENERGY STORAGE ; In operando ; MATERIALS SCIENCE ; Metal sulfides ; Sodium-ion batteries ; Synchrotron techniques</subject><ispartof>Nano energy, 2018-01, Vol.43 (C), p.184-191</ispartof><rights>2017 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-4784bcf64d01f53b054caddea27fb72dde58a58bd570625023f04d59a6b59483</citedby><cites>FETCH-LOGICAL-c379t-4784bcf64d01f53b054caddea27fb72dde58a58bd570625023f04d59a6b59483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1433998$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Liguang</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Guo, Fangmin</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Wu, Tianpin</creatorcontrib><creatorcontrib>Zuo, Pengjian</creatorcontrib><creatorcontrib>Yin, Geping</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques</title><title>Nano energy</title><description>Transition metal sulfides are promising high-capacity anode materials for sodium ion batteries in terms of the conversion reaction with multiple electron transfers. Nonetheless, some inherent challenges such as sluggish sodium ion diffusion kinetics, large volume change and poor cycle stability limit their implementation. Addressing these issues necessitates a comprehensive understanding on the complex sodium ion storage mechanism especially at the initial cycle. Here, taking nickel subsulfide as a model material, we reveal the complicated conversion reaction mechanism upon the first cycle by combining in operando 2D transmission X-ray microscopy with X-ray absorption spectroscopy, ex-situ 3D nano-tomography, high-energy X-ray diffraction and electrochemical impedance spectroscopy. This study demonstrates that the microstructure evolution, inherent slow sodium ion diffusion kinetics, and slow ion mobility at the two-phase interface contribute to the high irreversible capacity upon the first cycle. Such understandings are critical for developing the conversion reaction materials with the desired electrochemical activity and stability.
The reaction mechanism of the nickel subsulfide during the initial cycling is revealed by in operando transmission X-ray microscopy and high-energy synchrotron X-ray diffraction techniques combined with X-ray absorption spectroscopy, electrochemical impedance spectroscopy and 3D nano-tomography characterization. This study provides comprehensive understanding of the irreversibility of metal sulfides during the initial cycling for sodium ion batteries. [Display omitted]
•The irreversible conversion of Ni3S2 during the initial cycling is elucidated.•In operando 2D TXM-XANES and 3D nano-tomography reveal the reaction mechanism.•Structural evolution of Ni3S2 is confirmed by in operando HEXRD and ex-situ XAS.•The correlation of the sodiation process with reaction kinetics is revealed.</description><subject>Conversion mechanism</subject><subject>ENERGY STORAGE</subject><subject>In operando</subject><subject>MATERIALS SCIENCE</subject><subject>Metal sulfides</subject><subject>Sodium-ion batteries</subject><subject>Synchrotron techniques</subject><issn>2211-2855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrwzAQhH1ooSHNP-hB9G5Xki0_LoUS-oJAL-lZyNKq2eBIqaQE-u8rk567l12Y2Y9hiuKO0YpR1j7sK6ecB1dxyrqKsYry4apYcM5YyXshbopVjHuapxWsY3xRTJ_OQIhJOYPui6QdEHSYUE0EQ4Bz1nDECdMP8ZYcIGUhniaLBiKxPpDoDZ4OJXpHRpUSBMzCGRXxRwiZ6kkCvXP4fYJ4W1xbNUVY_e1lsX153q7fys3H6_v6aVPquhtS2XR9M2rbNoYyK-qRikYrY0Dxzo4dz5folehHIzrackF5bWljxKDaUQxNXy-L-wvWx4QyapwTaO8c6CRZU9fDMJuai0kHH2MAK48BDyr8SEblXKbcy0uZci5TMiZzmfnt8fIGOf8ZIcx8cBoMhhlvPP4P-AXDrIPu</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Liguang</creator><creator>Wang, Jiajun</creator><creator>Guo, Fangmin</creator><creator>Ma, Lu</creator><creator>Ren, Yang</creator><creator>Wu, Tianpin</creator><creator>Zuo, Pengjian</creator><creator>Yin, Geping</creator><creator>Wang, Jun</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180101</creationdate><title>Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques</title><author>Wang, Liguang ; Wang, Jiajun ; Guo, Fangmin ; Ma, Lu ; Ren, Yang ; Wu, Tianpin ; Zuo, Pengjian ; Yin, Geping ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-4784bcf64d01f53b054caddea27fb72dde58a58bd570625023f04d59a6b59483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conversion mechanism</topic><topic>ENERGY STORAGE</topic><topic>In operando</topic><topic>MATERIALS SCIENCE</topic><topic>Metal sulfides</topic><topic>Sodium-ion batteries</topic><topic>Synchrotron techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Liguang</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Guo, Fangmin</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Wu, Tianpin</creatorcontrib><creatorcontrib>Zuo, Pengjian</creatorcontrib><creatorcontrib>Yin, Geping</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Liguang</au><au>Wang, Jiajun</au><au>Guo, Fangmin</au><au>Ma, Lu</au><au>Ren, Yang</au><au>Wu, Tianpin</au><au>Zuo, Pengjian</au><au>Yin, Geping</au><au>Wang, Jun</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques</atitle><jtitle>Nano energy</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>43</volume><issue>C</issue><spage>184</spage><epage>191</epage><pages>184-191</pages><issn>2211-2855</issn><abstract>Transition metal sulfides are promising high-capacity anode materials for sodium ion batteries in terms of the conversion reaction with multiple electron transfers. Nonetheless, some inherent challenges such as sluggish sodium ion diffusion kinetics, large volume change and poor cycle stability limit their implementation. Addressing these issues necessitates a comprehensive understanding on the complex sodium ion storage mechanism especially at the initial cycle. Here, taking nickel subsulfide as a model material, we reveal the complicated conversion reaction mechanism upon the first cycle by combining in operando 2D transmission X-ray microscopy with X-ray absorption spectroscopy, ex-situ 3D nano-tomography, high-energy X-ray diffraction and electrochemical impedance spectroscopy. This study demonstrates that the microstructure evolution, inherent slow sodium ion diffusion kinetics, and slow ion mobility at the two-phase interface contribute to the high irreversible capacity upon the first cycle. Such understandings are critical for developing the conversion reaction materials with the desired electrochemical activity and stability.
The reaction mechanism of the nickel subsulfide during the initial cycling is revealed by in operando transmission X-ray microscopy and high-energy synchrotron X-ray diffraction techniques combined with X-ray absorption spectroscopy, electrochemical impedance spectroscopy and 3D nano-tomography characterization. This study provides comprehensive understanding of the irreversibility of metal sulfides during the initial cycling for sodium ion batteries. [Display omitted]
•The irreversible conversion of Ni3S2 during the initial cycling is elucidated.•In operando 2D TXM-XANES and 3D nano-tomography reveal the reaction mechanism.•Structural evolution of Ni3S2 is confirmed by in operando HEXRD and ex-situ XAS.•The correlation of the sodiation process with reaction kinetics is revealed.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nanoen.2017.11.029</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-2855 |
ispartof | Nano energy, 2018-01, Vol.43 (C), p.184-191 |
issn | 2211-2855 |
language | eng |
recordid | cdi_osti_scitechconnect_1433998 |
source | Alma/SFX Local Collection |
subjects | Conversion mechanism ENERGY STORAGE In operando MATERIALS SCIENCE Metal sulfides Sodium-ion batteries Synchrotron techniques |
title | Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20initial%20irreversibility%20of%20metal%20sulfides%20for%20sodium-ion%20batteries%20via%20operando%20techniques&rft.jtitle=Nano%20energy&rft.au=Wang,%20Liguang&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2018-01-01&rft.volume=43&rft.issue=C&rft.spage=184&rft.epage=191&rft.pages=184-191&rft.issn=2211-2855&rft_id=info:doi/10.1016/j.nanoen.2017.11.029&rft_dat=%3Celsevier_osti_%3ES2211285517307097%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2211285517307097&rfr_iscdi=true |