Stability of the 1144 phase in iron pnictides
A series of iron arsenides (e.g., CaRbFe4As4, SrCsFe4As4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discove...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-03, Vol.97 (9), Article 094105 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Physical review. B |
container_volume | 97 |
creator | Song, B. Q. Nguyen, Manh Cuong Wang, C. Z. Ho, K. M. |
description | A series of iron arsenides (e.g., CaRbFe4As4, SrCsFe4As4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discovered. In this work, we perform general model analysis as well as scenario calculation on a basis of density functional theory to investigate phase stability in a variety of compounds. We predict that the 1144-type phase could be stabilized in EuKFe4As4, EuRbFe4As4, EuCsFe4As4, CaCsFe4P4, SrCsFe4P4, BaCsFe4P4, InCaFe4As4, InSrFe4As4, etc. Remarkably, it involves rare earths, trivalence elements (e.g., indium) and iron phosphides, which greatly expands the range of its existence and suggests a promising prospect for experimental synthesis. In addition, we find that the formation of many random doping compounds (e.g., Ba0.5Cs0.5Fe2As2, Ba0.5Rb0.5Fe2As2) is driven by entropy and could be annealed to a 1144-type phase. Eventually, we plot a phase diagram about two structural factors Δa and Δc, giving a bird's-eye view of stability of various 1144 compounds. |
doi_str_mv | 10.1103/PhysRevB.97.094105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1433670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123177375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-1cca84de6d8fc55834fd902fed48db00a454f13aac1ad31fde56851ccc460bc43</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOIzzB1wFXXe8t0naZqmDLxhQfKxDJg-aYWxrkhHm31upurpn8Z3D5SPkHGGJCOzquT2kF_d1s5T1EiRHEEdkVvJKFlJW8vg_Czgli5S2AIAVyBrkjBSvWW_CLuQD7T3NraOInNOh1cnR0NEQ-44OXTA5WJfOyInXu-QWv3dO3u9u31YPxfrp_nF1vS4MrzAXaIxuuHWVbbwRomHcWwmld5Y3dgOgueAemdYGtWXorRNVI8bWWIeN4WxOLqbdPuWgkgnZmdb0XedMVsgZq2oYocsJGmL_uXcpq22_j934lyqxZFjXrBYjVU6UiX1K0Xk1xPCh40EhqB996k-fkrWa9LFvUwRikQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123177375</pqid></control><display><type>article</type><title>Stability of the 1144 phase in iron pnictides</title><source>American Physical Society Journals</source><creator>Song, B. Q. ; Nguyen, Manh Cuong ; Wang, C. Z. ; Ho, K. M.</creator><creatorcontrib>Song, B. Q. ; Nguyen, Manh Cuong ; Wang, C. Z. ; Ho, K. M. ; Ames Lab., Ames, IA (United States)</creatorcontrib><description>A series of iron arsenides (e.g., CaRbFe4As4, SrCsFe4As4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discovered. In this work, we perform general model analysis as well as scenario calculation on a basis of density functional theory to investigate phase stability in a variety of compounds. We predict that the 1144-type phase could be stabilized in EuKFe4As4, EuRbFe4As4, EuCsFe4As4, CaCsFe4P4, SrCsFe4P4, BaCsFe4P4, InCaFe4As4, InSrFe4As4, etc. Remarkably, it involves rare earths, trivalence elements (e.g., indium) and iron phosphides, which greatly expands the range of its existence and suggests a promising prospect for experimental synthesis. In addition, we find that the formation of many random doping compounds (e.g., Ba0.5Cs0.5Fe2As2, Ba0.5Rb0.5Fe2As2) is driven by entropy and could be annealed to a 1144-type phase. Eventually, we plot a phase diagram about two structural factors Δa and Δc, giving a bird's-eye view of stability of various 1144 compounds.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.094105</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Arsenides ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Density functional theory ; Group 5A compounds ; Iron ; Organic chemistry ; Phase diagrams ; Phase stability ; Phosphides ; Rare earth elements</subject><ispartof>Physical review. B, 2018-03, Vol.97 (9), Article 094105</ispartof><rights>Copyright American Physical Society Mar 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-1cca84de6d8fc55834fd902fed48db00a454f13aac1ad31fde56851ccc460bc43</citedby><cites>FETCH-LOGICAL-c461t-1cca84de6d8fc55834fd902fed48db00a454f13aac1ad31fde56851ccc460bc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1433670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, B. Q.</creatorcontrib><creatorcontrib>Nguyen, Manh Cuong</creatorcontrib><creatorcontrib>Wang, C. Z.</creatorcontrib><creatorcontrib>Ho, K. M.</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><title>Stability of the 1144 phase in iron pnictides</title><title>Physical review. B</title><description>A series of iron arsenides (e.g., CaRbFe4As4, SrCsFe4As4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discovered. In this work, we perform general model analysis as well as scenario calculation on a basis of density functional theory to investigate phase stability in a variety of compounds. We predict that the 1144-type phase could be stabilized in EuKFe4As4, EuRbFe4As4, EuCsFe4As4, CaCsFe4P4, SrCsFe4P4, BaCsFe4P4, InCaFe4As4, InSrFe4As4, etc. Remarkably, it involves rare earths, trivalence elements (e.g., indium) and iron phosphides, which greatly expands the range of its existence and suggests a promising prospect for experimental synthesis. In addition, we find that the formation of many random doping compounds (e.g., Ba0.5Cs0.5Fe2As2, Ba0.5Rb0.5Fe2As2) is driven by entropy and could be annealed to a 1144-type phase. Eventually, we plot a phase diagram about two structural factors Δa and Δc, giving a bird's-eye view of stability of various 1144 compounds.</description><subject>Arsenides</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Density functional theory</subject><subject>Group 5A compounds</subject><subject>Iron</subject><subject>Organic chemistry</subject><subject>Phase diagrams</subject><subject>Phase stability</subject><subject>Phosphides</subject><subject>Rare earth elements</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOIzzB1wFXXe8t0naZqmDLxhQfKxDJg-aYWxrkhHm31upurpn8Z3D5SPkHGGJCOzquT2kF_d1s5T1EiRHEEdkVvJKFlJW8vg_Czgli5S2AIAVyBrkjBSvWW_CLuQD7T3NraOInNOh1cnR0NEQ-44OXTA5WJfOyInXu-QWv3dO3u9u31YPxfrp_nF1vS4MrzAXaIxuuHWVbbwRomHcWwmld5Y3dgOgueAemdYGtWXorRNVI8bWWIeN4WxOLqbdPuWgkgnZmdb0XedMVsgZq2oYocsJGmL_uXcpq22_j934lyqxZFjXrBYjVU6UiX1K0Xk1xPCh40EhqB996k-fkrWa9LFvUwRikQ</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Song, B. Q.</creator><creator>Nguyen, Manh Cuong</creator><creator>Wang, C. Z.</creator><creator>Ho, K. M.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180314</creationdate><title>Stability of the 1144 phase in iron pnictides</title><author>Song, B. Q. ; Nguyen, Manh Cuong ; Wang, C. Z. ; Ho, K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-1cca84de6d8fc55834fd902fed48db00a454f13aac1ad31fde56851ccc460bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arsenides</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Density functional theory</topic><topic>Group 5A compounds</topic><topic>Iron</topic><topic>Organic chemistry</topic><topic>Phase diagrams</topic><topic>Phase stability</topic><topic>Phosphides</topic><topic>Rare earth elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, B. Q.</creatorcontrib><creatorcontrib>Nguyen, Manh Cuong</creatorcontrib><creatorcontrib>Wang, C. Z.</creatorcontrib><creatorcontrib>Ho, K. M.</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, B. Q.</au><au>Nguyen, Manh Cuong</au><au>Wang, C. Z.</au><au>Ho, K. M.</au><aucorp>Ames Lab., Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of the 1144 phase in iron pnictides</atitle><jtitle>Physical review. B</jtitle><date>2018-03-14</date><risdate>2018</risdate><volume>97</volume><issue>9</issue><artnum>094105</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>A series of iron arsenides (e.g., CaRbFe4As4, SrCsFe4As4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discovered. In this work, we perform general model analysis as well as scenario calculation on a basis of density functional theory to investigate phase stability in a variety of compounds. We predict that the 1144-type phase could be stabilized in EuKFe4As4, EuRbFe4As4, EuCsFe4As4, CaCsFe4P4, SrCsFe4P4, BaCsFe4P4, InCaFe4As4, InSrFe4As4, etc. Remarkably, it involves rare earths, trivalence elements (e.g., indium) and iron phosphides, which greatly expands the range of its existence and suggests a promising prospect for experimental synthesis. In addition, we find that the formation of many random doping compounds (e.g., Ba0.5Cs0.5Fe2As2, Ba0.5Rb0.5Fe2As2) is driven by entropy and could be annealed to a 1144-type phase. Eventually, we plot a phase diagram about two structural factors Δa and Δc, giving a bird's-eye view of stability of various 1144 compounds.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.094105</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-03, Vol.97 (9), Article 094105 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1433670 |
source | American Physical Society Journals |
subjects | Arsenides CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Density functional theory Group 5A compounds Iron Organic chemistry Phase diagrams Phase stability Phosphides Rare earth elements |
title | Stability of the 1144 phase in iron pnictides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20the%201144%20phase%20in%20iron%20pnictides&rft.jtitle=Physical%20review.%20B&rft.au=Song,%20B.%20Q.&rft.aucorp=Ames%20Lab.,%20Ames,%20IA%20(United%20States)&rft.date=2018-03-14&rft.volume=97&rft.issue=9&rft.artnum=094105&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.094105&rft_dat=%3Cproquest_osti_%3E2123177375%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123177375&rft_id=info:pmid/&rfr_iscdi=true |