Stability of the 1144 phase in iron pnictides

A series of iron arsenides (e.g., CaRbFe4As4, SrCsFe4As4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-03, Vol.97 (9), Article 094105
Hauptverfasser: Song, B. Q., Nguyen, Manh Cuong, Wang, C. Z., Ho, K. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physical review. B
container_volume 97
creator Song, B. Q.
Nguyen, Manh Cuong
Wang, C. Z.
Ho, K. M.
description A series of iron arsenides (e.g., CaRbFe4As4, SrCsFe4As4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discovered. In this work, we perform general model analysis as well as scenario calculation on a basis of density functional theory to investigate phase stability in a variety of compounds. We predict that the 1144-type phase could be stabilized in EuKFe4As4, EuRbFe4As4, EuCsFe4As4, CaCsFe4P4, SrCsFe4P4, BaCsFe4P4, InCaFe4As4, InSrFe4As4, etc. Remarkably, it involves rare earths, trivalence elements (e.g., indium) and iron phosphides, which greatly expands the range of its existence and suggests a promising prospect for experimental synthesis. In addition, we find that the formation of many random doping compounds (e.g., Ba0.5Cs0.5Fe2As2, Ba0.5Rb0.5Fe2As2) is driven by entropy and could be annealed to a 1144-type phase. Eventually, we plot a phase diagram about two structural factors Δa and Δc, giving a bird's-eye view of stability of various 1144 compounds.
doi_str_mv 10.1103/PhysRevB.97.094105
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1433670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123177375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-1cca84de6d8fc55834fd902fed48db00a454f13aac1ad31fde56851ccc460bc43</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOIzzB1wFXXe8t0naZqmDLxhQfKxDJg-aYWxrkhHm31upurpn8Z3D5SPkHGGJCOzquT2kF_d1s5T1EiRHEEdkVvJKFlJW8vg_Czgli5S2AIAVyBrkjBSvWW_CLuQD7T3NraOInNOh1cnR0NEQ-44OXTA5WJfOyInXu-QWv3dO3u9u31YPxfrp_nF1vS4MrzAXaIxuuHWVbbwRomHcWwmld5Y3dgOgueAemdYGtWXorRNVI8bWWIeN4WxOLqbdPuWgkgnZmdb0XedMVsgZq2oYocsJGmL_uXcpq22_j934lyqxZFjXrBYjVU6UiX1K0Xk1xPCh40EhqB996k-fkrWa9LFvUwRikQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123177375</pqid></control><display><type>article</type><title>Stability of the 1144 phase in iron pnictides</title><source>American Physical Society Journals</source><creator>Song, B. Q. ; Nguyen, Manh Cuong ; Wang, C. Z. ; Ho, K. M.</creator><creatorcontrib>Song, B. Q. ; Nguyen, Manh Cuong ; Wang, C. Z. ; Ho, K. M. ; Ames Lab., Ames, IA (United States)</creatorcontrib><description>A series of iron arsenides (e.g., CaRbFe4As4, SrCsFe4As4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discovered. In this work, we perform general model analysis as well as scenario calculation on a basis of density functional theory to investigate phase stability in a variety of compounds. We predict that the 1144-type phase could be stabilized in EuKFe4As4, EuRbFe4As4, EuCsFe4As4, CaCsFe4P4, SrCsFe4P4, BaCsFe4P4, InCaFe4As4, InSrFe4As4, etc. Remarkably, it involves rare earths, trivalence elements (e.g., indium) and iron phosphides, which greatly expands the range of its existence and suggests a promising prospect for experimental synthesis. In addition, we find that the formation of many random doping compounds (e.g., Ba0.5Cs0.5Fe2As2, Ba0.5Rb0.5Fe2As2) is driven by entropy and could be annealed to a 1144-type phase. Eventually, we plot a phase diagram about two structural factors Δa and Δc, giving a bird's-eye view of stability of various 1144 compounds.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.094105</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Arsenides ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Density functional theory ; Group 5A compounds ; Iron ; Organic chemistry ; Phase diagrams ; Phase stability ; Phosphides ; Rare earth elements</subject><ispartof>Physical review. B, 2018-03, Vol.97 (9), Article 094105</ispartof><rights>Copyright American Physical Society Mar 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-1cca84de6d8fc55834fd902fed48db00a454f13aac1ad31fde56851ccc460bc43</citedby><cites>FETCH-LOGICAL-c461t-1cca84de6d8fc55834fd902fed48db00a454f13aac1ad31fde56851ccc460bc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1433670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, B. Q.</creatorcontrib><creatorcontrib>Nguyen, Manh Cuong</creatorcontrib><creatorcontrib>Wang, C. Z.</creatorcontrib><creatorcontrib>Ho, K. M.</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><title>Stability of the 1144 phase in iron pnictides</title><title>Physical review. B</title><description>A series of iron arsenides (e.g., CaRbFe4As4, SrCsFe4As4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discovered. In this work, we perform general model analysis as well as scenario calculation on a basis of density functional theory to investigate phase stability in a variety of compounds. We predict that the 1144-type phase could be stabilized in EuKFe4As4, EuRbFe4As4, EuCsFe4As4, CaCsFe4P4, SrCsFe4P4, BaCsFe4P4, InCaFe4As4, InSrFe4As4, etc. Remarkably, it involves rare earths, trivalence elements (e.g., indium) and iron phosphides, which greatly expands the range of its existence and suggests a promising prospect for experimental synthesis. In addition, we find that the formation of many random doping compounds (e.g., Ba0.5Cs0.5Fe2As2, Ba0.5Rb0.5Fe2As2) is driven by entropy and could be annealed to a 1144-type phase. Eventually, we plot a phase diagram about two structural factors Δa and Δc, giving a bird's-eye view of stability of various 1144 compounds.</description><subject>Arsenides</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Density functional theory</subject><subject>Group 5A compounds</subject><subject>Iron</subject><subject>Organic chemistry</subject><subject>Phase diagrams</subject><subject>Phase stability</subject><subject>Phosphides</subject><subject>Rare earth elements</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOIzzB1wFXXe8t0naZqmDLxhQfKxDJg-aYWxrkhHm31upurpn8Z3D5SPkHGGJCOzquT2kF_d1s5T1EiRHEEdkVvJKFlJW8vg_Czgli5S2AIAVyBrkjBSvWW_CLuQD7T3NraOInNOh1cnR0NEQ-44OXTA5WJfOyInXu-QWv3dO3u9u31YPxfrp_nF1vS4MrzAXaIxuuHWVbbwRomHcWwmld5Y3dgOgueAemdYGtWXorRNVI8bWWIeN4WxOLqbdPuWgkgnZmdb0XedMVsgZq2oYocsJGmL_uXcpq22_j934lyqxZFjXrBYjVU6UiX1K0Xk1xPCh40EhqB996k-fkrWa9LFvUwRikQ</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Song, B. Q.</creator><creator>Nguyen, Manh Cuong</creator><creator>Wang, C. Z.</creator><creator>Ho, K. M.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180314</creationdate><title>Stability of the 1144 phase in iron pnictides</title><author>Song, B. Q. ; Nguyen, Manh Cuong ; Wang, C. Z. ; Ho, K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-1cca84de6d8fc55834fd902fed48db00a454f13aac1ad31fde56851ccc460bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arsenides</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Density functional theory</topic><topic>Group 5A compounds</topic><topic>Iron</topic><topic>Organic chemistry</topic><topic>Phase diagrams</topic><topic>Phase stability</topic><topic>Phosphides</topic><topic>Rare earth elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, B. Q.</creatorcontrib><creatorcontrib>Nguyen, Manh Cuong</creatorcontrib><creatorcontrib>Wang, C. Z.</creatorcontrib><creatorcontrib>Ho, K. M.</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, B. Q.</au><au>Nguyen, Manh Cuong</au><au>Wang, C. Z.</au><au>Ho, K. M.</au><aucorp>Ames Lab., Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of the 1144 phase in iron pnictides</atitle><jtitle>Physical review. B</jtitle><date>2018-03-14</date><risdate>2018</risdate><volume>97</volume><issue>9</issue><artnum>094105</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>A series of iron arsenides (e.g., CaRbFe4As4, SrCsFe4As4) have been discovered recently, and have provoked a rise in superconductor searches in a different phase, known as the 1144 phase. For the presence of various chemical substitutions, it is believed that more 1144 compounds remain to be discovered. In this work, we perform general model analysis as well as scenario calculation on a basis of density functional theory to investigate phase stability in a variety of compounds. We predict that the 1144-type phase could be stabilized in EuKFe4As4, EuRbFe4As4, EuCsFe4As4, CaCsFe4P4, SrCsFe4P4, BaCsFe4P4, InCaFe4As4, InSrFe4As4, etc. Remarkably, it involves rare earths, trivalence elements (e.g., indium) and iron phosphides, which greatly expands the range of its existence and suggests a promising prospect for experimental synthesis. In addition, we find that the formation of many random doping compounds (e.g., Ba0.5Cs0.5Fe2As2, Ba0.5Rb0.5Fe2As2) is driven by entropy and could be annealed to a 1144-type phase. Eventually, we plot a phase diagram about two structural factors Δa and Δc, giving a bird's-eye view of stability of various 1144 compounds.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.094105</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-03, Vol.97 (9), Article 094105
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1433670
source American Physical Society Journals
subjects Arsenides
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Density functional theory
Group 5A compounds
Iron
Organic chemistry
Phase diagrams
Phase stability
Phosphides
Rare earth elements
title Stability of the 1144 phase in iron pnictides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20the%201144%20phase%20in%20iron%20pnictides&rft.jtitle=Physical%20review.%20B&rft.au=Song,%20B.%20Q.&rft.aucorp=Ames%20Lab.,%20Ames,%20IA%20(United%20States)&rft.date=2018-03-14&rft.volume=97&rft.issue=9&rft.artnum=094105&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.094105&rft_dat=%3Cproquest_osti_%3E2123177375%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123177375&rft_id=info:pmid/&rfr_iscdi=true