Scaling properties of multiscale equilibration

We investigate the lattice spacing dependence of the equilibration time for a recently proposed multiscale thermalization algorithm for Markov chain Monte Carlo simulations. The algorithm uses a renormalization-group matched coarse lattice action and prolongation operation to rapidly thermalize deco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-04, Vol.97 (7), p.074507, Article 074507
Hauptverfasser: Detmold, W., Endres, M. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 074507
container_title Physical review. D
container_volume 97
creator Detmold, W.
Endres, M. G.
description We investigate the lattice spacing dependence of the equilibration time for a recently proposed multiscale thermalization algorithm for Markov chain Monte Carlo simulations. The algorithm uses a renormalization-group matched coarse lattice action and prolongation operation to rapidly thermalize decorrelated initial configurations for evolution using a corresponding target lattice action defined at a finer scale. Focusing on nontopological long-distance observables in pure SU(3) gauge theory, we provide quantitative evidence that the slow modes of the Markov process, which provide the dominant contribution to the rethermalization time, have a suppressed contribution toward the continuum limit, despite their associated timescales increasing. Based on these numerical investigations, we conjecture that the prolongation operation used herein will produce ensembles that are indistinguishable from the target fine-action distribution for a sufficiently fine coupling at a given level of statistical precision, thereby eliminating the cost of rethermalization.
doi_str_mv 10.1103/PhysRevD.97.074507
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1433463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126934601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-fa78b65dba7ac259e4993c3f8da5b068599682e650e05628674abe01516403213</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsNT-AVdB14l33pml1CcUFB_rYTKd2Clpks5MhP57U6Ku7oH7cTh8CF1iKDAGevO6OcQ3931XKFmAZBzkCZoRJiEHIOr0P2M4R4sYtzBGAUpiPEPFuzWNb7-yPnS9C8m7mHV1thua5OP4cpnbD77xVTDJd-0FOqtNE93i987R58P9x_IpX708Pi9vV7llmKS8NrKsBF9XRhpLuHJMKWppXa4Nr0CUXClREic4OOCClEIyUznAHAsGlGA6R1dTbxeT19H65OzGdm3rbNKYUcoEHaHrCRq37wcXk952Q2jHXZpgItQIwbGKTJQNXYzB1boPfmfCQWPQR3_6z59WUk_-6A84LmKZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126934601</pqid></control><display><type>article</type><title>Scaling properties of multiscale equilibration</title><source>American Physical Society Journals</source><creator>Detmold, W. ; Endres, M. G.</creator><creatorcontrib>Detmold, W. ; Endres, M. G. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>We investigate the lattice spacing dependence of the equilibration time for a recently proposed multiscale thermalization algorithm for Markov chain Monte Carlo simulations. The algorithm uses a renormalization-group matched coarse lattice action and prolongation operation to rapidly thermalize decorrelated initial configurations for evolution using a corresponding target lattice action defined at a finer scale. Focusing on nontopological long-distance observables in pure SU(3) gauge theory, we provide quantitative evidence that the slow modes of the Markov process, which provide the dominant contribution to the rethermalization time, have a suppressed contribution toward the continuum limit, despite their associated timescales increasing. Based on these numerical investigations, we conjecture that the prolongation operation used herein will produce ensembles that are indistinguishable from the target fine-action distribution for a sufficiently fine coupling at a given level of statistical precision, thereby eliminating the cost of rethermalization.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.97.074507</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algorithms ; Balancing ; Computer simulation ; Gauge theory ; Lattice matching ; Lattice vibration ; Markov analysis ; Markov chains ; Monte Carlo simulation ; Multiscale analysis ; Particles &amp; Fields ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Prolongation ; Statistical Physics ; Thermalization (energy absorption) ; Time dependence</subject><ispartof>Physical review. D, 2018-04, Vol.97 (7), p.074507, Article 074507</ispartof><rights>Copyright American Physical Society Apr 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-fa78b65dba7ac259e4993c3f8da5b068599682e650e05628674abe01516403213</citedby><cites>FETCH-LOGICAL-c412t-fa78b65dba7ac259e4993c3f8da5b068599682e650e05628674abe01516403213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1433463$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Detmold, W.</creatorcontrib><creatorcontrib>Endres, M. G.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Scaling properties of multiscale equilibration</title><title>Physical review. D</title><description>We investigate the lattice spacing dependence of the equilibration time for a recently proposed multiscale thermalization algorithm for Markov chain Monte Carlo simulations. The algorithm uses a renormalization-group matched coarse lattice action and prolongation operation to rapidly thermalize decorrelated initial configurations for evolution using a corresponding target lattice action defined at a finer scale. Focusing on nontopological long-distance observables in pure SU(3) gauge theory, we provide quantitative evidence that the slow modes of the Markov process, which provide the dominant contribution to the rethermalization time, have a suppressed contribution toward the continuum limit, despite their associated timescales increasing. Based on these numerical investigations, we conjecture that the prolongation operation used herein will produce ensembles that are indistinguishable from the target fine-action distribution for a sufficiently fine coupling at a given level of statistical precision, thereby eliminating the cost of rethermalization.</description><subject>Algorithms</subject><subject>Balancing</subject><subject>Computer simulation</subject><subject>Gauge theory</subject><subject>Lattice matching</subject><subject>Lattice vibration</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Monte Carlo simulation</subject><subject>Multiscale analysis</subject><subject>Particles &amp; Fields</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Prolongation</subject><subject>Statistical Physics</subject><subject>Thermalization (energy absorption)</subject><subject>Time dependence</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsNT-AVdB14l33pml1CcUFB_rYTKd2Clpks5MhP57U6Ku7oH7cTh8CF1iKDAGevO6OcQ3931XKFmAZBzkCZoRJiEHIOr0P2M4R4sYtzBGAUpiPEPFuzWNb7-yPnS9C8m7mHV1thua5OP4cpnbD77xVTDJd-0FOqtNE93i987R58P9x_IpX708Pi9vV7llmKS8NrKsBF9XRhpLuHJMKWppXa4Nr0CUXClREic4OOCClEIyUznAHAsGlGA6R1dTbxeT19H65OzGdm3rbNKYUcoEHaHrCRq37wcXk952Q2jHXZpgItQIwbGKTJQNXYzB1boPfmfCQWPQR3_6z59WUk_-6A84LmKZ</recordid><startdate>20180417</startdate><enddate>20180417</enddate><creator>Detmold, W.</creator><creator>Endres, M. G.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20180417</creationdate><title>Scaling properties of multiscale equilibration</title><author>Detmold, W. ; Endres, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-fa78b65dba7ac259e4993c3f8da5b068599682e650e05628674abe01516403213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Balancing</topic><topic>Computer simulation</topic><topic>Gauge theory</topic><topic>Lattice matching</topic><topic>Lattice vibration</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Monte Carlo simulation</topic><topic>Multiscale analysis</topic><topic>Particles &amp; Fields</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Prolongation</topic><topic>Statistical Physics</topic><topic>Thermalization (energy absorption)</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Detmold, W.</creatorcontrib><creatorcontrib>Endres, M. G.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Detmold, W.</au><au>Endres, M. G.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling properties of multiscale equilibration</atitle><jtitle>Physical review. D</jtitle><date>2018-04-17</date><risdate>2018</risdate><volume>97</volume><issue>7</issue><spage>074507</spage><pages>074507-</pages><artnum>074507</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We investigate the lattice spacing dependence of the equilibration time for a recently proposed multiscale thermalization algorithm for Markov chain Monte Carlo simulations. The algorithm uses a renormalization-group matched coarse lattice action and prolongation operation to rapidly thermalize decorrelated initial configurations for evolution using a corresponding target lattice action defined at a finer scale. Focusing on nontopological long-distance observables in pure SU(3) gauge theory, we provide quantitative evidence that the slow modes of the Markov process, which provide the dominant contribution to the rethermalization time, have a suppressed contribution toward the continuum limit, despite their associated timescales increasing. Based on these numerical investigations, we conjecture that the prolongation operation used herein will produce ensembles that are indistinguishable from the target fine-action distribution for a sufficiently fine coupling at a given level of statistical precision, thereby eliminating the cost of rethermalization.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.97.074507</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2018-04, Vol.97 (7), p.074507, Article 074507
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1433463
source American Physical Society Journals
subjects Algorithms
Balancing
Computer simulation
Gauge theory
Lattice matching
Lattice vibration
Markov analysis
Markov chains
Monte Carlo simulation
Multiscale analysis
Particles & Fields
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Prolongation
Statistical Physics
Thermalization (energy absorption)
Time dependence
title Scaling properties of multiscale equilibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20properties%20of%20multiscale%20equilibration&rft.jtitle=Physical%20review.%20D&rft.au=Detmold,%20W.&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2018-04-17&rft.volume=97&rft.issue=7&rft.spage=074507&rft.pages=074507-&rft.artnum=074507&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.97.074507&rft_dat=%3Cproquest_osti_%3E2126934601%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126934601&rft_id=info:pmid/&rfr_iscdi=true