Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation

Organized rainstorms and their associated overturning circulations can self-emerge over an ocean surface with uniform temperature in cloud-resolving simulations. This phenomenon is referred to as convective self-aggregation. Convective self-aggregation is argued to be an important building block for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2018-02, Vol.75 (2), p.469-478
1. Verfasser: Yang, Da
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue 2
container_start_page 469
container_title Journal of the atmospheric sciences
container_volume 75
creator Yang, Da
description Organized rainstorms and their associated overturning circulations can self-emerge over an ocean surface with uniform temperature in cloud-resolving simulations. This phenomenon is referred to as convective self-aggregation. Convective self-aggregation is argued to be an important building block for tropical weather systems and may help regulate tropical atmospheric humidity and thereby tropical climate stability. Here the author presents a boundary layer theory for the horizontal scale λ of 2D (x, z) convective self-aggregation by considering both the momentum and energy constraints for steady circulations. This theory suggests that λ scales with the product of the boundary layer height h and the square root of the amplitude of density variation between aggregated moist and dry regions in the boundary layer, and that this density variation mainly arises from the moisture variation due to the virtual effect of water vapor. This theory predicts the following: 1) the order of magnitude of λ is ~2000 km, 2) the aspect ratio of the boundary layer λ/h increases with surface warming, and 3) λ decreases when the virtual effect of water vapor is disabled. These predictions are confirmed using a suite of cloud-resolving simulations spanning a wide range of climates.
doi_str_mv 10.1175/JAS-D-17-0150.1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1433115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117938211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-4a63a9c25b2b1fa513f38445dc3191b8aba170b54dc6d763a9599151efa452bb3</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKtrt0HXsbl5dDrLPtQqBRfVdcxkMtMpbVIzmcL4602pd3Pg8nE4fAjdA30CyOTofbomCwIZoSDT6wINQDJKqBjnl2hAKWNE5GxyjW7adkvTsQwG6HvmO1fq0OOV7m3AS9vUm4i1K_Gs8712pscLG23YN87iuLF46UPz613UO7w2emexr_Dcu6M1sTlavLa7ikzrOthax8a7W3RV6V1r7_5ziL5enj_nS7L6eH2bT1fECJFHIvSY69wwWbACKi2BV3wihCwNhxyKiS40ZLSQojTjMjuxMs9Bgq20kKwo-BA9nHt9GxvVmiZaszHeubRLgeAcQCbo8Qwdgv_pbBvV1nfBpV2KJYk5n6RI1OhMmeDbNthKHUKzT44UUHVyrZJrtVCQqZNrBfwPS9FxHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117938211</pqid></control><display><type>article</type><title>Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Da</creator><creatorcontrib>Yang, Da ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Organized rainstorms and their associated overturning circulations can self-emerge over an ocean surface with uniform temperature in cloud-resolving simulations. This phenomenon is referred to as convective self-aggregation. Convective self-aggregation is argued to be an important building block for tropical weather systems and may help regulate tropical atmospheric humidity and thereby tropical climate stability. Here the author presents a boundary layer theory for the horizontal scale λ of 2D (x, z) convective self-aggregation by considering both the momentum and energy constraints for steady circulations. This theory suggests that λ scales with the product of the boundary layer height h and the square root of the amplitude of density variation between aggregated moist and dry regions in the boundary layer, and that this density variation mainly arises from the moisture variation due to the virtual effect of water vapor. This theory predicts the following: 1) the order of magnitude of λ is ~2000 km, 2) the aspect ratio of the boundary layer λ/h increases with surface warming, and 3) λ decreases when the virtual effect of water vapor is disabled. These predictions are confirmed using a suite of cloud-resolving simulations spanning a wide range of climates.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-17-0150.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Agglomeration ; Aggregation ; Aspect ratio ; Atmosphere ; Boundary conditions ; Boundary layer ; Boundary layer height ; Boundary layer stability ; Boundary layers ; Buoyancy ; Climate change ; Cloud resolving models ; Convection ; Cyclones ; Density ; Earth ; ENVIRONMENTAL SCIENCES ; Equilibrium ; Gravitational waves ; Height ; Humidity ; Hydrology ; Momentum ; Ocean surface ; Rainstorms ; Simulation ; Stability ; Surface temperature ; Temperature ; Temperature (air-sea) ; Theories ; Tropical climate ; Tropical climates ; Variation ; Water vapor ; Water vapour</subject><ispartof>Journal of the atmospheric sciences, 2018-02, Vol.75 (2), p.469-478</ispartof><rights>Copyright American Meteorological Society 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-4a63a9c25b2b1fa513f38445dc3191b8aba170b54dc6d763a9599151efa452bb3</citedby><cites>FETCH-LOGICAL-c449t-4a63a9c25b2b1fa513f38445dc3191b8aba170b54dc6d763a9599151efa452bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,3668,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1433115$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Da</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation</title><title>Journal of the atmospheric sciences</title><description>Organized rainstorms and their associated overturning circulations can self-emerge over an ocean surface with uniform temperature in cloud-resolving simulations. This phenomenon is referred to as convective self-aggregation. Convective self-aggregation is argued to be an important building block for tropical weather systems and may help regulate tropical atmospheric humidity and thereby tropical climate stability. Here the author presents a boundary layer theory for the horizontal scale λ of 2D (x, z) convective self-aggregation by considering both the momentum and energy constraints for steady circulations. This theory suggests that λ scales with the product of the boundary layer height h and the square root of the amplitude of density variation between aggregated moist and dry regions in the boundary layer, and that this density variation mainly arises from the moisture variation due to the virtual effect of water vapor. This theory predicts the following: 1) the order of magnitude of λ is ~2000 km, 2) the aspect ratio of the boundary layer λ/h increases with surface warming, and 3) λ decreases when the virtual effect of water vapor is disabled. These predictions are confirmed using a suite of cloud-resolving simulations spanning a wide range of climates.</description><subject>Agglomeration</subject><subject>Aggregation</subject><subject>Aspect ratio</subject><subject>Atmosphere</subject><subject>Boundary conditions</subject><subject>Boundary layer</subject><subject>Boundary layer height</subject><subject>Boundary layer stability</subject><subject>Boundary layers</subject><subject>Buoyancy</subject><subject>Climate change</subject><subject>Cloud resolving models</subject><subject>Convection</subject><subject>Cyclones</subject><subject>Density</subject><subject>Earth</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Equilibrium</subject><subject>Gravitational waves</subject><subject>Height</subject><subject>Humidity</subject><subject>Hydrology</subject><subject>Momentum</subject><subject>Ocean surface</subject><subject>Rainstorms</subject><subject>Simulation</subject><subject>Stability</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature (air-sea)</subject><subject>Theories</subject><subject>Tropical climate</subject><subject>Tropical climates</subject><subject>Variation</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEtLAzEUhYMoWKtrt0HXsbl5dDrLPtQqBRfVdcxkMtMpbVIzmcL4602pd3Pg8nE4fAjdA30CyOTofbomCwIZoSDT6wINQDJKqBjnl2hAKWNE5GxyjW7adkvTsQwG6HvmO1fq0OOV7m3AS9vUm4i1K_Gs8712pscLG23YN87iuLF46UPz613UO7w2emexr_Dcu6M1sTlavLa7ikzrOthax8a7W3RV6V1r7_5ziL5enj_nS7L6eH2bT1fECJFHIvSY69wwWbACKi2BV3wihCwNhxyKiS40ZLSQojTjMjuxMs9Bgq20kKwo-BA9nHt9GxvVmiZaszHeubRLgeAcQCbo8Qwdgv_pbBvV1nfBpV2KJYk5n6RI1OhMmeDbNthKHUKzT44UUHVyrZJrtVCQqZNrBfwPS9FxHQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Yang, Da</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180201</creationdate><title>Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation</title><author>Yang, Da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-4a63a9c25b2b1fa513f38445dc3191b8aba170b54dc6d763a9599151efa452bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agglomeration</topic><topic>Aggregation</topic><topic>Aspect ratio</topic><topic>Atmosphere</topic><topic>Boundary conditions</topic><topic>Boundary layer</topic><topic>Boundary layer height</topic><topic>Boundary layer stability</topic><topic>Boundary layers</topic><topic>Buoyancy</topic><topic>Climate change</topic><topic>Cloud resolving models</topic><topic>Convection</topic><topic>Cyclones</topic><topic>Density</topic><topic>Earth</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Equilibrium</topic><topic>Gravitational waves</topic><topic>Height</topic><topic>Humidity</topic><topic>Hydrology</topic><topic>Momentum</topic><topic>Ocean surface</topic><topic>Rainstorms</topic><topic>Simulation</topic><topic>Stability</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature (air-sea)</topic><topic>Theories</topic><topic>Tropical climate</topic><topic>Tropical climates</topic><topic>Variation</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Da</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Da</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>75</volume><issue>2</issue><spage>469</spage><epage>478</epage><pages>469-478</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>Organized rainstorms and their associated overturning circulations can self-emerge over an ocean surface with uniform temperature in cloud-resolving simulations. This phenomenon is referred to as convective self-aggregation. Convective self-aggregation is argued to be an important building block for tropical weather systems and may help regulate tropical atmospheric humidity and thereby tropical climate stability. Here the author presents a boundary layer theory for the horizontal scale λ of 2D (x, z) convective self-aggregation by considering both the momentum and energy constraints for steady circulations. This theory suggests that λ scales with the product of the boundary layer height h and the square root of the amplitude of density variation between aggregated moist and dry regions in the boundary layer, and that this density variation mainly arises from the moisture variation due to the virtual effect of water vapor. This theory predicts the following: 1) the order of magnitude of λ is ~2000 km, 2) the aspect ratio of the boundary layer λ/h increases with surface warming, and 3) λ decreases when the virtual effect of water vapor is disabled. These predictions are confirmed using a suite of cloud-resolving simulations spanning a wide range of climates.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-17-0150.1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2018-02, Vol.75 (2), p.469-478
issn 0022-4928
1520-0469
language eng
recordid cdi_osti_scitechconnect_1433115
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Agglomeration
Aggregation
Aspect ratio
Atmosphere
Boundary conditions
Boundary layer
Boundary layer height
Boundary layer stability
Boundary layers
Buoyancy
Climate change
Cloud resolving models
Convection
Cyclones
Density
Earth
ENVIRONMENTAL SCIENCES
Equilibrium
Gravitational waves
Height
Humidity
Hydrology
Momentum
Ocean surface
Rainstorms
Simulation
Stability
Surface temperature
Temperature
Temperature (air-sea)
Theories
Tropical climate
Tropical climates
Variation
Water vapor
Water vapour
title Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Layer%20Height%20and%20Buoyancy%20Determine%20the%20Horizontal%20Scale%20of%20Convective%20Self-Aggregation&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Yang,%20Da&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-02-01&rft.volume=75&rft.issue=2&rft.spage=469&rft.epage=478&rft.pages=469-478&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-17-0150.1&rft_dat=%3Cproquest_osti_%3E2117938211%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117938211&rft_id=info:pmid/&rfr_iscdi=true