Giant Mechano-Optoelectronic Effect in an Atomically Thin Semiconductor

Transition metal dichalcogenides (TMDs) are particularly sensitive to mechanical strain because they are capable of experiencing high atomic displacements without nucleating defects to release excess energy. Being promising for photonic applications, it has been shown that as certain phases of layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2018-04, Vol.18 (4), p.2351-2357
Hauptverfasser: Wu, Wei, Wang, Jin, Ercius, Peter, Wright, Nicomario C, Leppert-Simenauer, Danielle M, Burke, Robert A, Dubey, Madan, Dogare, Avinash M, Pettes, Michael T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2357
container_issue 4
container_start_page 2351
container_title Nano letters
container_volume 18
creator Wu, Wei
Wang, Jin
Ercius, Peter
Wright, Nicomario C
Leppert-Simenauer, Danielle M
Burke, Robert A
Dubey, Madan
Dogare, Avinash M
Pettes, Michael T
description Transition metal dichalcogenides (TMDs) are particularly sensitive to mechanical strain because they are capable of experiencing high atomic displacements without nucleating defects to release excess energy. Being promising for photonic applications, it has been shown that as certain phases of layered TMDs MX2 (M = Mo or W; X = S, Se, or Te) are scaled to a thickness of one monolayer, the photoluminescence response is dramatically enhanced due to the emergence of a direct electronic band gap compared with their multilayer or bulk counterparts, which typically exhibit indirect band gaps. Recently, mechanical strain has also been predicted to enable direct excitonic recombination in these materials, in which large changes in the photoluminescence response will occur during an indirect-to-direct band gap transition brought on by elastic tensile strain. Here, we demonstrate an enhancement of 2 orders of magnitude in the photoluminescence emission intensity in uniaxially strained single crystalline WSe2 bilayers. Through a theoretical model that includes experimentally relevant system conditions, we determine this amplification to arise from a significant increase in direct excitonic recombination. Adding confidence to the high levels of elastic strain achieved in this report, we observe strain-independent, mode-dependent Grüneisen parameters over the entire range of tensile strain (1–3.59%), which were obtained as 1.149 ± 0.027, 0.307 ± 0.061, and 0.357 ± 0.103 for the E2g, A1g, and A2 1g optical phonon modes, respectively. These results can inform the predictive strain-engineered design of other atomically thin indirect semiconductors, in which a decrease in out-of-plane bonding strength may lead to an increase in the strength of strain-coupled optoelectronic effects.
doi_str_mv 10.1021/acs.nanolett.7b05229
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1432708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016534085</sourcerecordid><originalsourceid>FETCH-LOGICAL-a458t-2aed861e3744cbde0e083c4113ece1342bd0f4243947afa2647608492c70d3183</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EolD4A4QiVmxSxo-8llVVClJRF5S15TgTNVVql9hZ9O9xlbZLVh5b546vDiFPFCYUGH1T2k2MMrZF7ydZCQljxRW5owmHOC0Kdn2ZczEi985tAaDgCdySESuSJE8ZvyOLRaOMj75Qb8KueLX3FlvUvrOm0dG8rsMcNSZSJpp6u2u0attDtN6Ep28MV2uqXnvbPZCbWrUOH0_nmPy8z9ezj3i5WnzOpstYiST3MVNY5SlFngmhywoBIedaUMpRI-WClRXUggleiEzViqUiSyEXBdMZVJzmfExehr3W-UY63fjQPLQwoaekgrMMjtDrAO07-9uj83LXOI1tqwza3kkGNE24gDwJqBhQ3VnnOqzlvmt2qjtICvLoWQbP8uxZnjyH2PPph77cYXUJncUGAAbgGN_avjPByv87_wBXVovA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016534085</pqid></control><display><type>article</type><title>Giant Mechano-Optoelectronic Effect in an Atomically Thin Semiconductor</title><source>ACS Publications</source><creator>Wu, Wei ; Wang, Jin ; Ercius, Peter ; Wright, Nicomario C ; Leppert-Simenauer, Danielle M ; Burke, Robert A ; Dubey, Madan ; Dogare, Avinash M ; Pettes, Michael T</creator><creatorcontrib>Wu, Wei ; Wang, Jin ; Ercius, Peter ; Wright, Nicomario C ; Leppert-Simenauer, Danielle M ; Burke, Robert A ; Dubey, Madan ; Dogare, Avinash M ; Pettes, Michael T ; Univ. of Connecticut, Storrs, CT (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Transition metal dichalcogenides (TMDs) are particularly sensitive to mechanical strain because they are capable of experiencing high atomic displacements without nucleating defects to release excess energy. Being promising for photonic applications, it has been shown that as certain phases of layered TMDs MX2 (M = Mo or W; X = S, Se, or Te) are scaled to a thickness of one monolayer, the photoluminescence response is dramatically enhanced due to the emergence of a direct electronic band gap compared with their multilayer or bulk counterparts, which typically exhibit indirect band gaps. Recently, mechanical strain has also been predicted to enable direct excitonic recombination in these materials, in which large changes in the photoluminescence response will occur during an indirect-to-direct band gap transition brought on by elastic tensile strain. Here, we demonstrate an enhancement of 2 orders of magnitude in the photoluminescence emission intensity in uniaxially strained single crystalline WSe2 bilayers. Through a theoretical model that includes experimentally relevant system conditions, we determine this amplification to arise from a significant increase in direct excitonic recombination. Adding confidence to the high levels of elastic strain achieved in this report, we observe strain-independent, mode-dependent Grüneisen parameters over the entire range of tensile strain (1–3.59%), which were obtained as 1.149 ± 0.027, 0.307 ± 0.061, and 0.357 ± 0.103 for the E2g, A1g, and A2 1g optical phonon modes, respectively. These results can inform the predictive strain-engineered design of other atomically thin indirect semiconductors, in which a decrease in out-of-plane bonding strength may lead to an increase in the strength of strain-coupled optoelectronic effects.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b05229</identifier><identifier>PMID: 29558623</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>band gap engineering ; MATERIALS SCIENCE ; NANOSCIENCE AND NANOTECHNOLOGY ; optoelectronics ; photoluminescence ; strain engineering ; transition metal dichalcogenide ; tungsten diselenide</subject><ispartof>Nano letters, 2018-04, Vol.18 (4), p.2351-2357</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a458t-2aed861e3744cbde0e083c4113ece1342bd0f4243947afa2647608492c70d3183</citedby><cites>FETCH-LOGICAL-a458t-2aed861e3744cbde0e083c4113ece1342bd0f4243947afa2647608492c70d3183</cites><orcidid>0000-0001-6862-6841 ; 0000000168626841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b05229$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b05229$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29558623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1432708$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Ercius, Peter</creatorcontrib><creatorcontrib>Wright, Nicomario C</creatorcontrib><creatorcontrib>Leppert-Simenauer, Danielle M</creatorcontrib><creatorcontrib>Burke, Robert A</creatorcontrib><creatorcontrib>Dubey, Madan</creatorcontrib><creatorcontrib>Dogare, Avinash M</creatorcontrib><creatorcontrib>Pettes, Michael T</creatorcontrib><creatorcontrib>Univ. of Connecticut, Storrs, CT (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Giant Mechano-Optoelectronic Effect in an Atomically Thin Semiconductor</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Transition metal dichalcogenides (TMDs) are particularly sensitive to mechanical strain because they are capable of experiencing high atomic displacements without nucleating defects to release excess energy. Being promising for photonic applications, it has been shown that as certain phases of layered TMDs MX2 (M = Mo or W; X = S, Se, or Te) are scaled to a thickness of one monolayer, the photoluminescence response is dramatically enhanced due to the emergence of a direct electronic band gap compared with their multilayer or bulk counterparts, which typically exhibit indirect band gaps. Recently, mechanical strain has also been predicted to enable direct excitonic recombination in these materials, in which large changes in the photoluminescence response will occur during an indirect-to-direct band gap transition brought on by elastic tensile strain. Here, we demonstrate an enhancement of 2 orders of magnitude in the photoluminescence emission intensity in uniaxially strained single crystalline WSe2 bilayers. Through a theoretical model that includes experimentally relevant system conditions, we determine this amplification to arise from a significant increase in direct excitonic recombination. Adding confidence to the high levels of elastic strain achieved in this report, we observe strain-independent, mode-dependent Grüneisen parameters over the entire range of tensile strain (1–3.59%), which were obtained as 1.149 ± 0.027, 0.307 ± 0.061, and 0.357 ± 0.103 for the E2g, A1g, and A2 1g optical phonon modes, respectively. These results can inform the predictive strain-engineered design of other atomically thin indirect semiconductors, in which a decrease in out-of-plane bonding strength may lead to an increase in the strength of strain-coupled optoelectronic effects.</description><subject>band gap engineering</subject><subject>MATERIALS SCIENCE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>optoelectronics</subject><subject>photoluminescence</subject><subject>strain engineering</subject><subject>transition metal dichalcogenide</subject><subject>tungsten diselenide</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EolD4A4QiVmxSxo-8llVVClJRF5S15TgTNVVql9hZ9O9xlbZLVh5b546vDiFPFCYUGH1T2k2MMrZF7ydZCQljxRW5owmHOC0Kdn2ZczEi985tAaDgCdySESuSJE8ZvyOLRaOMj75Qb8KueLX3FlvUvrOm0dG8rsMcNSZSJpp6u2u0attDtN6Ep28MV2uqXnvbPZCbWrUOH0_nmPy8z9ezj3i5WnzOpstYiST3MVNY5SlFngmhywoBIedaUMpRI-WClRXUggleiEzViqUiSyEXBdMZVJzmfExehr3W-UY63fjQPLQwoaekgrMMjtDrAO07-9uj83LXOI1tqwza3kkGNE24gDwJqBhQ3VnnOqzlvmt2qjtICvLoWQbP8uxZnjyH2PPph77cYXUJncUGAAbgGN_avjPByv87_wBXVovA</recordid><startdate>20180411</startdate><enddate>20180411</enddate><creator>Wu, Wei</creator><creator>Wang, Jin</creator><creator>Ercius, Peter</creator><creator>Wright, Nicomario C</creator><creator>Leppert-Simenauer, Danielle M</creator><creator>Burke, Robert A</creator><creator>Dubey, Madan</creator><creator>Dogare, Avinash M</creator><creator>Pettes, Michael T</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6862-6841</orcidid><orcidid>https://orcid.org/0000000168626841</orcidid></search><sort><creationdate>20180411</creationdate><title>Giant Mechano-Optoelectronic Effect in an Atomically Thin Semiconductor</title><author>Wu, Wei ; Wang, Jin ; Ercius, Peter ; Wright, Nicomario C ; Leppert-Simenauer, Danielle M ; Burke, Robert A ; Dubey, Madan ; Dogare, Avinash M ; Pettes, Michael T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a458t-2aed861e3744cbde0e083c4113ece1342bd0f4243947afa2647608492c70d3183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>band gap engineering</topic><topic>MATERIALS SCIENCE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>optoelectronics</topic><topic>photoluminescence</topic><topic>strain engineering</topic><topic>transition metal dichalcogenide</topic><topic>tungsten diselenide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Ercius, Peter</creatorcontrib><creatorcontrib>Wright, Nicomario C</creatorcontrib><creatorcontrib>Leppert-Simenauer, Danielle M</creatorcontrib><creatorcontrib>Burke, Robert A</creatorcontrib><creatorcontrib>Dubey, Madan</creatorcontrib><creatorcontrib>Dogare, Avinash M</creatorcontrib><creatorcontrib>Pettes, Michael T</creatorcontrib><creatorcontrib>Univ. of Connecticut, Storrs, CT (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wei</au><au>Wang, Jin</au><au>Ercius, Peter</au><au>Wright, Nicomario C</au><au>Leppert-Simenauer, Danielle M</au><au>Burke, Robert A</au><au>Dubey, Madan</au><au>Dogare, Avinash M</au><au>Pettes, Michael T</au><aucorp>Univ. of Connecticut, Storrs, CT (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant Mechano-Optoelectronic Effect in an Atomically Thin Semiconductor</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-04-11</date><risdate>2018</risdate><volume>18</volume><issue>4</issue><spage>2351</spage><epage>2357</epage><pages>2351-2357</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Transition metal dichalcogenides (TMDs) are particularly sensitive to mechanical strain because they are capable of experiencing high atomic displacements without nucleating defects to release excess energy. Being promising for photonic applications, it has been shown that as certain phases of layered TMDs MX2 (M = Mo or W; X = S, Se, or Te) are scaled to a thickness of one monolayer, the photoluminescence response is dramatically enhanced due to the emergence of a direct electronic band gap compared with their multilayer or bulk counterparts, which typically exhibit indirect band gaps. Recently, mechanical strain has also been predicted to enable direct excitonic recombination in these materials, in which large changes in the photoluminescence response will occur during an indirect-to-direct band gap transition brought on by elastic tensile strain. Here, we demonstrate an enhancement of 2 orders of magnitude in the photoluminescence emission intensity in uniaxially strained single crystalline WSe2 bilayers. Through a theoretical model that includes experimentally relevant system conditions, we determine this amplification to arise from a significant increase in direct excitonic recombination. Adding confidence to the high levels of elastic strain achieved in this report, we observe strain-independent, mode-dependent Grüneisen parameters over the entire range of tensile strain (1–3.59%), which were obtained as 1.149 ± 0.027, 0.307 ± 0.061, and 0.357 ± 0.103 for the E2g, A1g, and A2 1g optical phonon modes, respectively. These results can inform the predictive strain-engineered design of other atomically thin indirect semiconductors, in which a decrease in out-of-plane bonding strength may lead to an increase in the strength of strain-coupled optoelectronic effects.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29558623</pmid><doi>10.1021/acs.nanolett.7b05229</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6862-6841</orcidid><orcidid>https://orcid.org/0000000168626841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2018-04, Vol.18 (4), p.2351-2357
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1432708
source ACS Publications
subjects band gap engineering
MATERIALS SCIENCE
NANOSCIENCE AND NANOTECHNOLOGY
optoelectronics
photoluminescence
strain engineering
transition metal dichalcogenide
tungsten diselenide
title Giant Mechano-Optoelectronic Effect in an Atomically Thin Semiconductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20Mechano-Optoelectronic%20Effect%20in%20an%20Atomically%20Thin%20Semiconductor&rft.jtitle=Nano%20letters&rft.au=Wu,%20Wei&rft.aucorp=Univ.%20of%20Connecticut,%20Storrs,%20CT%20(United%20States)&rft.date=2018-04-11&rft.volume=18&rft.issue=4&rft.spage=2351&rft.epage=2357&rft.pages=2351-2357&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b05229&rft_dat=%3Cproquest_osti_%3E2016534085%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2016534085&rft_id=info:pmid/29558623&rfr_iscdi=true