Identification of linearised RMS-voltage dip patterns based on clustering in renewable plants

Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET generation, transmission & distribution transmission & distribution, 2018-03, Vol.12 (6), p.1256-1262
Hauptverfasser: García-Sánchez, Tania, Gómez-Lázaro, Emilio, Muljadi, Edward, Kessler, Mathieu, Muñoz-Benavente, Irene, Molina-García, Angel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1262
container_issue 6
container_start_page 1256
container_title IET generation, transmission & distribution
container_volume 12
creator García-Sánchez, Tania
Gómez-Lázaro, Emilio
Muljadi, Edward
Kessler, Mathieu
Muñoz-Benavente, Irene
Molina-García, Angel
description Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an alternative characterisation solution to classify and visualise a large number of collected events in light of current limits and requirements. The authors’ approach is based on linearised root-mean-square-(RMS)-voltage trajectories, taking into account LRVT requirements, and a clustering process to identify the most likely pattern trajectories. The proposed solution gives extensive information on an event's severity by providing a simple but complete visualisation of the linearised RMS-voltage patterns. In addition, these patterns are compared to current LVRT requirements to determine similarities or discrepancies. A large number of collected events can then be automatically classified and visualised for comparative purposes. Real disturbances collected from renewable sources in Spain are used to assess the proposed solution. Extensive results and discussions are also included in this study.
doi_str_mv 10.1049/iet-gtd.2017.0474
format Article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_osti_scitechconnect_1432612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GTD2BF01762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3952-38256653d48848c7c9527a6074482d01a2896c08d5e6fe2dcacb017ef6cf524c3</originalsourceid><addsrcrecordid>eNqFkEFPwyAUxxujiTr9AN6INw-dQIEybzqnLpkx0Xk0hMHrxFTaFOayby_NjPGg8QQ8fn9475dlJwQPCWajcwcxX0Y7pJiUQ8xKtpMdkJKTXIoR3_3ey3I_OwzhDWPOBSsPspepBR9d5YyOrvGoqVDtPOjOBbDo8f4p_2jqqJeArGtRq2OEzge00P114k29Cqnk_BI5jzrwsNaLGlBbax_DUbZX6TrA8dc6yJ5vJvPxXT57uJ2OL2e5KUac5oWkXAheWCYlk6Y0qVhqgUvGJLWYaCpHwmBpOYgKqDXaLNKcUAlTccpMMchOt-82IToVjItgXk3jPZioCCuoIDRBZAuZrgmhg0q1nXvX3UYRrHqJKklUSaLqJapeYspcbDNrV8Pm_4C6nV_Tq5t0FP2HZ9twj701q84nB2o6mffUj0xrq8Tmv7B_N_YJkOqVTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of linearised RMS-voltage dip patterns based on clustering in renewable plants</title><source>Wiley Online Library Open Access</source><creator>García-Sánchez, Tania ; Gómez-Lázaro, Emilio ; Muljadi, Edward ; Kessler, Mathieu ; Muñoz-Benavente, Irene ; Molina-García, Angel</creator><creatorcontrib>García-Sánchez, Tania ; Gómez-Lázaro, Emilio ; Muljadi, Edward ; Kessler, Mathieu ; Muñoz-Benavente, Irene ; Molina-García, Angel ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an alternative characterisation solution to classify and visualise a large number of collected events in light of current limits and requirements. The authors’ approach is based on linearised root-mean-square-(RMS)-voltage trajectories, taking into account LRVT requirements, and a clustering process to identify the most likely pattern trajectories. The proposed solution gives extensive information on an event's severity by providing a simple but complete visualisation of the linearised RMS-voltage patterns. In addition, these patterns are compared to current LVRT requirements to determine similarities or discrepancies. A large number of collected events can then be automatically classified and visualised for comparative purposes. Real disturbances collected from renewable sources in Spain are used to assess the proposed solution. Extensive results and discussions are also included in this study.</description><identifier>ISSN: 1751-8687</identifier><identifier>ISSN: 1751-8695</identifier><identifier>EISSN: 1751-8695</identifier><identifier>DOI: 10.1049/iet-gtd.2017.0474</identifier><language>eng</language><publisher>United States: The Institution of Engineering and Technology</publisher><subject>clustering ; clustering process ; generation unit ; linearised RMS‐voltage dip pattern identification ; linearised RMS‐voltage pattern visualisation ; linearised root‐mean‐square‐voltage trajectories ; low-voltage ride-through ; low‐voltage ride‐through requirements ; LVRT ; LVRT requirements ; pattern classification ; pattern clustering ; photovoltaic installations ; photovoltaic power systems ; power generation faults ; power grid ; power grids ; POWER TRANSMISSION AND DISTRIBUTION ; real disturbance collection ; renewable plant ; renewable sources ; Research Article ; RMS‐voltage trajectories ; Spain ; voltage dip ; wind power plants</subject><ispartof>IET generation, transmission &amp; distribution, 2018-03, Vol.12 (6), p.1256-1262</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2018 The Authors. IET Generation, Transmission &amp; Distribution published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3952-38256653d48848c7c9527a6074482d01a2896c08d5e6fe2dcacb017ef6cf524c3</citedby><cites>FETCH-LOGICAL-c3952-38256653d48848c7c9527a6074482d01a2896c08d5e6fe2dcacb017ef6cf524c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-gtd.2017.0474$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-gtd.2017.0474$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2017.0474$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1432612$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>García-Sánchez, Tania</creatorcontrib><creatorcontrib>Gómez-Lázaro, Emilio</creatorcontrib><creatorcontrib>Muljadi, Edward</creatorcontrib><creatorcontrib>Kessler, Mathieu</creatorcontrib><creatorcontrib>Muñoz-Benavente, Irene</creatorcontrib><creatorcontrib>Molina-García, Angel</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Identification of linearised RMS-voltage dip patterns based on clustering in renewable plants</title><title>IET generation, transmission &amp; distribution</title><description>Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an alternative characterisation solution to classify and visualise a large number of collected events in light of current limits and requirements. The authors’ approach is based on linearised root-mean-square-(RMS)-voltage trajectories, taking into account LRVT requirements, and a clustering process to identify the most likely pattern trajectories. The proposed solution gives extensive information on an event's severity by providing a simple but complete visualisation of the linearised RMS-voltage patterns. In addition, these patterns are compared to current LVRT requirements to determine similarities or discrepancies. A large number of collected events can then be automatically classified and visualised for comparative purposes. Real disturbances collected from renewable sources in Spain are used to assess the proposed solution. Extensive results and discussions are also included in this study.</description><subject>clustering</subject><subject>clustering process</subject><subject>generation unit</subject><subject>linearised RMS‐voltage dip pattern identification</subject><subject>linearised RMS‐voltage pattern visualisation</subject><subject>linearised root‐mean‐square‐voltage trajectories</subject><subject>low-voltage ride-through</subject><subject>low‐voltage ride‐through requirements</subject><subject>LVRT</subject><subject>LVRT requirements</subject><subject>pattern classification</subject><subject>pattern clustering</subject><subject>photovoltaic installations</subject><subject>photovoltaic power systems</subject><subject>power generation faults</subject><subject>power grid</subject><subject>power grids</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>real disturbance collection</subject><subject>renewable plant</subject><subject>renewable sources</subject><subject>Research Article</subject><subject>RMS‐voltage trajectories</subject><subject>Spain</subject><subject>voltage dip</subject><subject>wind power plants</subject><issn>1751-8687</issn><issn>1751-8695</issn><issn>1751-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwyAUxxujiTr9AN6INw-dQIEybzqnLpkx0Xk0hMHrxFTaFOayby_NjPGg8QQ8fn9475dlJwQPCWajcwcxX0Y7pJiUQ8xKtpMdkJKTXIoR3_3ey3I_OwzhDWPOBSsPspepBR9d5YyOrvGoqVDtPOjOBbDo8f4p_2jqqJeArGtRq2OEzge00P114k29Cqnk_BI5jzrwsNaLGlBbax_DUbZX6TrA8dc6yJ5vJvPxXT57uJ2OL2e5KUac5oWkXAheWCYlk6Y0qVhqgUvGJLWYaCpHwmBpOYgKqDXaLNKcUAlTccpMMchOt-82IToVjItgXk3jPZioCCuoIDRBZAuZrgmhg0q1nXvX3UYRrHqJKklUSaLqJapeYspcbDNrV8Pm_4C6nV_Tq5t0FP2HZ9twj701q84nB2o6mffUj0xrq8Tmv7B_N_YJkOqVTQ</recordid><startdate>20180327</startdate><enddate>20180327</enddate><creator>García-Sánchez, Tania</creator><creator>Gómez-Lázaro, Emilio</creator><creator>Muljadi, Edward</creator><creator>Kessler, Mathieu</creator><creator>Muñoz-Benavente, Irene</creator><creator>Molina-García, Angel</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180327</creationdate><title>Identification of linearised RMS-voltage dip patterns based on clustering in renewable plants</title><author>García-Sánchez, Tania ; Gómez-Lázaro, Emilio ; Muljadi, Edward ; Kessler, Mathieu ; Muñoz-Benavente, Irene ; Molina-García, Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3952-38256653d48848c7c9527a6074482d01a2896c08d5e6fe2dcacb017ef6cf524c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>clustering</topic><topic>clustering process</topic><topic>generation unit</topic><topic>linearised RMS‐voltage dip pattern identification</topic><topic>linearised RMS‐voltage pattern visualisation</topic><topic>linearised root‐mean‐square‐voltage trajectories</topic><topic>low-voltage ride-through</topic><topic>low‐voltage ride‐through requirements</topic><topic>LVRT</topic><topic>LVRT requirements</topic><topic>pattern classification</topic><topic>pattern clustering</topic><topic>photovoltaic installations</topic><topic>photovoltaic power systems</topic><topic>power generation faults</topic><topic>power grid</topic><topic>power grids</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>real disturbance collection</topic><topic>renewable plant</topic><topic>renewable sources</topic><topic>Research Article</topic><topic>RMS‐voltage trajectories</topic><topic>Spain</topic><topic>voltage dip</topic><topic>wind power plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Sánchez, Tania</creatorcontrib><creatorcontrib>Gómez-Lázaro, Emilio</creatorcontrib><creatorcontrib>Muljadi, Edward</creatorcontrib><creatorcontrib>Kessler, Mathieu</creatorcontrib><creatorcontrib>Muñoz-Benavente, Irene</creatorcontrib><creatorcontrib>Molina-García, Angel</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IET generation, transmission &amp; distribution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>García-Sánchez, Tania</au><au>Gómez-Lázaro, Emilio</au><au>Muljadi, Edward</au><au>Kessler, Mathieu</au><au>Muñoz-Benavente, Irene</au><au>Molina-García, Angel</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of linearised RMS-voltage dip patterns based on clustering in renewable plants</atitle><jtitle>IET generation, transmission &amp; distribution</jtitle><date>2018-03-27</date><risdate>2018</risdate><volume>12</volume><issue>6</issue><spage>1256</spage><epage>1262</epage><pages>1256-1262</pages><issn>1751-8687</issn><issn>1751-8695</issn><eissn>1751-8695</eissn><abstract>Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an alternative characterisation solution to classify and visualise a large number of collected events in light of current limits and requirements. The authors’ approach is based on linearised root-mean-square-(RMS)-voltage trajectories, taking into account LRVT requirements, and a clustering process to identify the most likely pattern trajectories. The proposed solution gives extensive information on an event's severity by providing a simple but complete visualisation of the linearised RMS-voltage patterns. In addition, these patterns are compared to current LVRT requirements to determine similarities or discrepancies. A large number of collected events can then be automatically classified and visualised for comparative purposes. Real disturbances collected from renewable sources in Spain are used to assess the proposed solution. Extensive results and discussions are also included in this study.</abstract><cop>United States</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-gtd.2017.0474</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8687
ispartof IET generation, transmission & distribution, 2018-03, Vol.12 (6), p.1256-1262
issn 1751-8687
1751-8695
1751-8695
language eng
recordid cdi_osti_scitechconnect_1432612
source Wiley Online Library Open Access
subjects clustering
clustering process
generation unit
linearised RMS‐voltage dip pattern identification
linearised RMS‐voltage pattern visualisation
linearised root‐mean‐square‐voltage trajectories
low-voltage ride-through
low‐voltage ride‐through requirements
LVRT
LVRT requirements
pattern classification
pattern clustering
photovoltaic installations
photovoltaic power systems
power generation faults
power grid
power grids
POWER TRANSMISSION AND DISTRIBUTION
real disturbance collection
renewable plant
renewable sources
Research Article
RMS‐voltage trajectories
Spain
voltage dip
wind power plants
title Identification of linearised RMS-voltage dip patterns based on clustering in renewable plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20linearised%20RMS-voltage%20dip%20patterns%20based%20on%20clustering%20in%20renewable%20plants&rft.jtitle=IET%20generation,%20transmission%20&%20distribution&rft.au=Garc%C3%ADa-S%C3%A1nchez,%20Tania&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2018-03-27&rft.volume=12&rft.issue=6&rft.spage=1256&rft.epage=1262&rft.pages=1256-1262&rft.issn=1751-8687&rft.eissn=1751-8695&rft_id=info:doi/10.1049/iet-gtd.2017.0474&rft_dat=%3Cwiley_24P%3EGTD2BF01762%3C/wiley_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true