Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development
Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material...
Gespeichert in:
Veröffentlicht in: | SAE International journal of materials and manufacturing 2016-08, Vol.9 (3), p.729-736, Article 2016-01-0498 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 736 |
---|---|
container_issue | 3 |
container_start_page | 729 |
container_title | SAE International journal of materials and manufacturing |
container_volume | 9 |
creator | Li, Yang Zhao, Qiangsheng Mirdamadi, Mansour Zeng, Danielle Su, Xuming |
description | Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple types of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models,i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work. |
doi_str_mv | 10.4271/2016-01-0498 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1431013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A475961920</galeid><jstor_id>26269122</jstor_id><sourcerecordid>A475961920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-624fe138d190a35c13bba946adc08a9c736ea673dfa48f6e15c80f8a032da6ec3</originalsourceid><addsrcrecordid>eNptkc1v1DAQxSNEJUrhxhUpgitp_ZE48bFa7UKlIg5txQ1r4thbrxJ78TiI_vc4pCogIR9sj3_z_OxXFG8oOa9ZSy8YoaIitCK17J4Vp1TWouKya58_rVv5oniJeCBEtISz0-LbznmXTLkdzWR8Km_cNI-QXPBlsOUmTMdoEJft5zAOzu-X8tfww_hyB310utxA7PPxzvUmXmyP4efD77aAWRZfFScWRjSvH-ez4m63vd18qq6_fLzaXF5XupYiVYLV1lDeDVQS4I2mvO8hO4ZBkw6kbrkwIFo-WKg7KwxtdEdsB_kJAwij-VnxbtUNmJxCne_W9zp4b3RStOaUUJ6h9yt0jOH7bDCpQ5ijz74Ua2oiCG9amqnzldrDaJTzNqQIOo_BTC5LGuty_bJuGymoZCQ3fPiroZ_R-eXLPLr9fcI9zIj_xXUMiNFYdYxugvigKFFLjGqJURGqlhgzXq04wuImmWx4iQfGP-b_5d-u_AFTiE_aTDAhKWP8F9fnp2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540603571</pqid></control><display><type>article</type><title>Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development</title><source>Jstor Complete Legacy</source><creator>Li, Yang ; Zhao, Qiangsheng ; Mirdamadi, Mansour ; Zeng, Danielle ; Su, Xuming</creator><creatorcontrib>Li, Yang ; Zhao, Qiangsheng ; Mirdamadi, Mansour ; Zeng, Danielle ; Su, Xuming ; Ford Motor Company, Dearborn, MI (United States)</creatorcontrib><description>Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple types of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models,i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.</description><identifier>ISSN: 1946-3979</identifier><identifier>ISSN: 1946-3987</identifier><identifier>EISSN: 1946-3987</identifier><identifier>DOI: 10.4271/2016-01-0498</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Automobiles ; Carbon ; Carbon fiber reinforced plastics ; Carbon fibers ; Composite materials ; Curing ; Design and construction ; Design optimization ; Epoxy resins ; Fabric structures ; Fabrics ; Finite element analysis ; Finite element method ; Forming ; Injection molding ; Lightweight construction ; Materials ; MATERIALS SCIENCE ; Mechanical properties ; Methods ; Modeling ; Molding ; Molding (Chemical technology) ; Molding materials ; Physics ; Pressure molding ; Properties ; Resins ; Shear zones ; Simulation ; Simulations ; Thermal analysis ; Woven fabrics ; Yarns</subject><ispartof>SAE International journal of materials and manufacturing, 2016-08, Vol.9 (3), p.729-736, Article 2016-01-0498</ispartof><rights>Copyright © 2016 SAE International</rights><rights>COPYRIGHT 2016 SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-624fe138d190a35c13bba946adc08a9c736ea673dfa48f6e15c80f8a032da6ec3</citedby><cites>FETCH-LOGICAL-c496t-624fe138d190a35c13bba946adc08a9c736ea673dfa48f6e15c80f8a032da6ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26269122$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26269122$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1431013$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhao, Qiangsheng</creatorcontrib><creatorcontrib>Mirdamadi, Mansour</creatorcontrib><creatorcontrib>Zeng, Danielle</creatorcontrib><creatorcontrib>Su, Xuming</creatorcontrib><creatorcontrib>Ford Motor Company, Dearborn, MI (United States)</creatorcontrib><title>Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development</title><title>SAE International journal of materials and manufacturing</title><description>Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple types of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models,i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.</description><subject>Automobiles</subject><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Curing</subject><subject>Design and construction</subject><subject>Design optimization</subject><subject>Epoxy resins</subject><subject>Fabric structures</subject><subject>Fabrics</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Forming</subject><subject>Injection molding</subject><subject>Lightweight construction</subject><subject>Materials</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Modeling</subject><subject>Molding</subject><subject>Molding (Chemical technology)</subject><subject>Molding materials</subject><subject>Physics</subject><subject>Pressure molding</subject><subject>Properties</subject><subject>Resins</subject><subject>Shear zones</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Thermal analysis</subject><subject>Woven fabrics</subject><subject>Yarns</subject><issn>1946-3979</issn><issn>1946-3987</issn><issn>1946-3987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkc1v1DAQxSNEJUrhxhUpgitp_ZE48bFa7UKlIg5txQ1r4thbrxJ78TiI_vc4pCogIR9sj3_z_OxXFG8oOa9ZSy8YoaIitCK17J4Vp1TWouKya58_rVv5oniJeCBEtISz0-LbznmXTLkdzWR8Km_cNI-QXPBlsOUmTMdoEJft5zAOzu-X8tfww_hyB310utxA7PPxzvUmXmyP4efD77aAWRZfFScWRjSvH-ez4m63vd18qq6_fLzaXF5XupYiVYLV1lDeDVQS4I2mvO8hO4ZBkw6kbrkwIFo-WKg7KwxtdEdsB_kJAwij-VnxbtUNmJxCne_W9zp4b3RStOaUUJ6h9yt0jOH7bDCpQ5ijz74Ua2oiCG9amqnzldrDaJTzNqQIOo_BTC5LGuty_bJuGymoZCQ3fPiroZ_R-eXLPLr9fcI9zIj_xXUMiNFYdYxugvigKFFLjGqJURGqlhgzXq04wuImmWx4iQfGP-b_5d-u_AFTiE_aTDAhKWP8F9fnp2A</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Li, Yang</creator><creator>Zhao, Qiangsheng</creator><creator>Mirdamadi, Mansour</creator><creator>Zeng, Danielle</creator><creator>Su, Xuming</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160801</creationdate><title>Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites</title><author>Li, Yang ; Zhao, Qiangsheng ; Mirdamadi, Mansour ; Zeng, Danielle ; Su, Xuming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-624fe138d190a35c13bba946adc08a9c736ea673dfa48f6e15c80f8a032da6ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automobiles</topic><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Curing</topic><topic>Design and construction</topic><topic>Design optimization</topic><topic>Epoxy resins</topic><topic>Fabric structures</topic><topic>Fabrics</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Forming</topic><topic>Injection molding</topic><topic>Lightweight construction</topic><topic>Materials</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Modeling</topic><topic>Molding</topic><topic>Molding (Chemical technology)</topic><topic>Molding materials</topic><topic>Physics</topic><topic>Pressure molding</topic><topic>Properties</topic><topic>Resins</topic><topic>Shear zones</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Thermal analysis</topic><topic>Woven fabrics</topic><topic>Yarns</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhao, Qiangsheng</creatorcontrib><creatorcontrib>Mirdamadi, Mansour</creatorcontrib><creatorcontrib>Zeng, Danielle</creatorcontrib><creatorcontrib>Su, Xuming</creatorcontrib><creatorcontrib>Ford Motor Company, Dearborn, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>SAE International journal of materials and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>Zhao, Qiangsheng</au><au>Mirdamadi, Mansour</au><au>Zeng, Danielle</au><au>Su, Xuming</au><aucorp>Ford Motor Company, Dearborn, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development</atitle><jtitle>SAE International journal of materials and manufacturing</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>9</volume><issue>3</issue><spage>729</spage><epage>736</epage><pages>729-736</pages><artnum>2016-01-0498</artnum><issn>1946-3979</issn><issn>1946-3987</issn><eissn>1946-3987</eissn><abstract>Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple types of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models,i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2016-01-0498</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1946-3979 |
ispartof | SAE International journal of materials and manufacturing, 2016-08, Vol.9 (3), p.729-736, Article 2016-01-0498 |
issn | 1946-3979 1946-3987 1946-3987 |
language | eng |
recordid | cdi_osti_scitechconnect_1431013 |
source | Jstor Complete Legacy |
subjects | Automobiles Carbon Carbon fiber reinforced plastics Carbon fibers Composite materials Curing Design and construction Design optimization Epoxy resins Fabric structures Fabrics Finite element analysis Finite element method Forming Injection molding Lightweight construction Materials MATERIALS SCIENCE Mechanical properties Methods Modeling Molding Molding (Chemical technology) Molding materials Physics Pressure molding Properties Resins Shear zones Simulation Simulations Thermal analysis Woven fabrics Yarns |
title | Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Element%20Simulation%20of%20Compression%20Molding%20of%20Woven%20Fabric%20Carbon%20Fiber/Epoxy%20Composites:%20Part%20I%20Material%20Model%20Development&rft.jtitle=SAE%20International%20journal%20of%20materials%20and%20manufacturing&rft.au=Li,%20Yang&rft.aucorp=Ford%20Motor%20Company,%20Dearborn,%20MI%20(United%20States)&rft.date=2016-08-01&rft.volume=9&rft.issue=3&rft.spage=729&rft.epage=736&rft.pages=729-736&rft.artnum=2016-01-0498&rft.issn=1946-3979&rft.eissn=1946-3987&rft_id=info:doi/10.4271/2016-01-0498&rft_dat=%3Cgale_osti_%3EA475961920%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540603571&rft_id=info:pmid/&rft_galeid=A475961920&rft_jstor_id=26269122&rfr_iscdi=true |