Surface tension models for a multi-material ALE code with AMR
•Surface tension models implemented in 3D multi-physics multi-material code ALE–AMR.•Diffuse-interface Kortewge-type surface tension model is shown to produce droplets.•Height function and volume-fraction interface reconstruction is optimum for EUV app.•Adding surface tension effects results in only...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2017-06, Vol.151 (C), p.91-101 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | C |
container_start_page | 91 |
container_title | Computers & fluids |
container_volume | 151 |
creator | Liu, Wangyi Koniges, Alice Gott, Kevin Eder, David Barnard, John Friedman, Alex Masters, Nathan Fisher, Aaron |
description | •Surface tension models implemented in 3D multi-physics multi-material code ALE–AMR.•Diffuse-interface Kortewge-type surface tension model is shown to produce droplets.•Height function and volume-fraction interface reconstruction is optimum for EUV app.•Adding surface tension effects results in only a modest increase in computing cost.•Surface tension can impact droplet dynamics relevant to EUV lithography sources.
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. Based on the results, the height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography. |
doi_str_mv | 10.1016/j.compfluid.2017.01.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1430982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793017300294</els_id><sourcerecordid>1919588675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-4cf0e9bba4c0f011e401428ac9caf51b588d3c0d45e4138a864c3d77232fa8033</originalsourceid><addsrcrecordid>eNqFUF1LxDAQDKLg-fEbDPrcc7dJm_bBh0P8ghPBj-eQSxPM0TZnkir-e3Oc-CoMLMvOzA5DyBnCHAHry_Vc-2Fj-8l18xJQzAEz6j0yw0a0BQgu9skMgFeFaBkckqMY15B3VvIZuXqZglXa0GTG6PxIB9-ZPlLrA1V0mPrkikElE5zq6WJ5Q3W-0y-X3uni8fmEHFjVR3P6O4_J2-3N6_V9sXy6e7heLAvNsU0F1xZMu1oprsECouGAvGyUbrWyFa6qpumYho5XhiNrVFNzzTohSlZa1QBjx-R85-tjcjJql4x-134cjU4SOYO2KTPpYkfaBP8xmZjk2k9hzLkkttjmJ7WoMkvsWDr4GIOxchPcoMK3RJDbQuVa_hUqt4VKwIw6Kxc7Ze7HfDoTtkHMqE3nwjZH592_Hj8H64DS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919588675</pqid></control><display><type>article</type><title>Surface tension models for a multi-material ALE code with AMR</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Wangyi ; Koniges, Alice ; Gott, Kevin ; Eder, David ; Barnard, John ; Friedman, Alex ; Masters, Nathan ; Fisher, Aaron</creator><creatorcontrib>Liu, Wangyi ; Koniges, Alice ; Gott, Kevin ; Eder, David ; Barnard, John ; Friedman, Alex ; Masters, Nathan ; Fisher, Aaron ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>•Surface tension models implemented in 3D multi-physics multi-material code ALE–AMR.•Diffuse-interface Kortewge-type surface tension model is shown to produce droplets.•Height function and volume-fraction interface reconstruction is optimum for EUV app.•Adding surface tension effects results in only a modest increase in computing cost.•Surface tension can impact droplet dynamics relevant to EUV lithography sources.
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. Based on the results, the height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2017.01.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>ALE ; AMR ; Computational fluid dynamics ; Computer simulation ; Deformation ; ENGINEERING ; Extreme ultraviolet radiation ; Finite element method ; Fluid flow ; Fragmentation ; Hydrodynamics ; Interface reconstruction ; Lithography ; Mathematical models ; MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Multi-physics modeling ; Plasmas ; Reconstruction ; Surface tension ; Three dimensional models</subject><ispartof>Computers & fluids, 2017-06, Vol.151 (C), p.91-101</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 27, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-4cf0e9bba4c0f011e401428ac9caf51b588d3c0d45e4138a864c3d77232fa8033</citedby><cites>FETCH-LOGICAL-c419t-4cf0e9bba4c0f011e401428ac9caf51b588d3c0d45e4138a864c3d77232fa8033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2017.01.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1430982$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Wangyi</creatorcontrib><creatorcontrib>Koniges, Alice</creatorcontrib><creatorcontrib>Gott, Kevin</creatorcontrib><creatorcontrib>Eder, David</creatorcontrib><creatorcontrib>Barnard, John</creatorcontrib><creatorcontrib>Friedman, Alex</creatorcontrib><creatorcontrib>Masters, Nathan</creatorcontrib><creatorcontrib>Fisher, Aaron</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Surface tension models for a multi-material ALE code with AMR</title><title>Computers & fluids</title><description>•Surface tension models implemented in 3D multi-physics multi-material code ALE–AMR.•Diffuse-interface Kortewge-type surface tension model is shown to produce droplets.•Height function and volume-fraction interface reconstruction is optimum for EUV app.•Adding surface tension effects results in only a modest increase in computing cost.•Surface tension can impact droplet dynamics relevant to EUV lithography sources.
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. Based on the results, the height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.</description><subject>ALE</subject><subject>AMR</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>ENGINEERING</subject><subject>Extreme ultraviolet radiation</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fragmentation</subject><subject>Hydrodynamics</subject><subject>Interface reconstruction</subject><subject>Lithography</subject><subject>Mathematical models</subject><subject>MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Multi-physics modeling</subject><subject>Plasmas</subject><subject>Reconstruction</subject><subject>Surface tension</subject><subject>Three dimensional models</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LxDAQDKLg-fEbDPrcc7dJm_bBh0P8ghPBj-eQSxPM0TZnkir-e3Oc-CoMLMvOzA5DyBnCHAHry_Vc-2Fj-8l18xJQzAEz6j0yw0a0BQgu9skMgFeFaBkckqMY15B3VvIZuXqZglXa0GTG6PxIB9-ZPlLrA1V0mPrkikElE5zq6WJ5Q3W-0y-X3uni8fmEHFjVR3P6O4_J2-3N6_V9sXy6e7heLAvNsU0F1xZMu1oprsECouGAvGyUbrWyFa6qpumYho5XhiNrVFNzzTohSlZa1QBjx-R85-tjcjJql4x-134cjU4SOYO2KTPpYkfaBP8xmZjk2k9hzLkkttjmJ7WoMkvsWDr4GIOxchPcoMK3RJDbQuVa_hUqt4VKwIw6Kxc7Ze7HfDoTtkHMqE3nwjZH592_Hj8H64DS</recordid><startdate>20170627</startdate><enddate>20170627</enddate><creator>Liu, Wangyi</creator><creator>Koniges, Alice</creator><creator>Gott, Kevin</creator><creator>Eder, David</creator><creator>Barnard, John</creator><creator>Friedman, Alex</creator><creator>Masters, Nathan</creator><creator>Fisher, Aaron</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170627</creationdate><title>Surface tension models for a multi-material ALE code with AMR</title><author>Liu, Wangyi ; Koniges, Alice ; Gott, Kevin ; Eder, David ; Barnard, John ; Friedman, Alex ; Masters, Nathan ; Fisher, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-4cf0e9bba4c0f011e401428ac9caf51b588d3c0d45e4138a864c3d77232fa8033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ALE</topic><topic>AMR</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>ENGINEERING</topic><topic>Extreme ultraviolet radiation</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fragmentation</topic><topic>Hydrodynamics</topic><topic>Interface reconstruction</topic><topic>Lithography</topic><topic>Mathematical models</topic><topic>MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Multi-physics modeling</topic><topic>Plasmas</topic><topic>Reconstruction</topic><topic>Surface tension</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wangyi</creatorcontrib><creatorcontrib>Koniges, Alice</creatorcontrib><creatorcontrib>Gott, Kevin</creatorcontrib><creatorcontrib>Eder, David</creatorcontrib><creatorcontrib>Barnard, John</creatorcontrib><creatorcontrib>Friedman, Alex</creatorcontrib><creatorcontrib>Masters, Nathan</creatorcontrib><creatorcontrib>Fisher, Aaron</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wangyi</au><au>Koniges, Alice</au><au>Gott, Kevin</au><au>Eder, David</au><au>Barnard, John</au><au>Friedman, Alex</au><au>Masters, Nathan</au><au>Fisher, Aaron</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface tension models for a multi-material ALE code with AMR</atitle><jtitle>Computers & fluids</jtitle><date>2017-06-27</date><risdate>2017</risdate><volume>151</volume><issue>C</issue><spage>91</spage><epage>101</epage><pages>91-101</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•Surface tension models implemented in 3D multi-physics multi-material code ALE–AMR.•Diffuse-interface Kortewge-type surface tension model is shown to produce droplets.•Height function and volume-fraction interface reconstruction is optimum for EUV app.•Adding surface tension effects results in only a modest increase in computing cost.•Surface tension can impact droplet dynamics relevant to EUV lithography sources.
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. Based on the results, the height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2017.01.016</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2017-06, Vol.151 (C), p.91-101 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_osti_scitechconnect_1430982 |
source | Elsevier ScienceDirect Journals Complete |
subjects | ALE AMR Computational fluid dynamics Computer simulation Deformation ENGINEERING Extreme ultraviolet radiation Finite element method Fluid flow Fragmentation Hydrodynamics Interface reconstruction Lithography Mathematical models MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE Multi-physics modeling Plasmas Reconstruction Surface tension Three dimensional models |
title | Surface tension models for a multi-material ALE code with AMR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20tension%20models%20for%20a%20multi-material%20ALE%20code%20with%20AMR&rft.jtitle=Computers%20&%20fluids&rft.au=Liu,%20Wangyi&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2017-06-27&rft.volume=151&rft.issue=C&rft.spage=91&rft.epage=101&rft.pages=91-101&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2017.01.016&rft_dat=%3Cproquest_osti_%3E1919588675%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919588675&rft_id=info:pmid/&rft_els_id=S0045793017300294&rfr_iscdi=true |