Surface tension models for a multi-material ALE code with AMR

•Surface tension models implemented in 3D multi-physics multi-material code ALE–AMR.•Diffuse-interface Kortewge-type surface tension model is shown to produce droplets.•Height function and volume-fraction interface reconstruction is optimum for EUV app.•Adding surface tension effects results in only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2017-06, Vol.151 (C), p.91-101
Hauptverfasser: Liu, Wangyi, Koniges, Alice, Gott, Kevin, Eder, David, Barnard, John, Friedman, Alex, Masters, Nathan, Fisher, Aaron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue C
container_start_page 91
container_title Computers & fluids
container_volume 151
creator Liu, Wangyi
Koniges, Alice
Gott, Kevin
Eder, David
Barnard, John
Friedman, Alex
Masters, Nathan
Fisher, Aaron
description •Surface tension models implemented in 3D multi-physics multi-material code ALE–AMR.•Diffuse-interface Kortewge-type surface tension model is shown to produce droplets.•Height function and volume-fraction interface reconstruction is optimum for EUV app.•Adding surface tension effects results in only a modest increase in computing cost.•Surface tension can impact droplet dynamics relevant to EUV lithography sources. A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. Based on the results, the height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.
doi_str_mv 10.1016/j.compfluid.2017.01.016
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1430982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793017300294</els_id><sourcerecordid>1919588675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-4cf0e9bba4c0f011e401428ac9caf51b588d3c0d45e4138a864c3d77232fa8033</originalsourceid><addsrcrecordid>eNqFUF1LxDAQDKLg-fEbDPrcc7dJm_bBh0P8ghPBj-eQSxPM0TZnkir-e3Oc-CoMLMvOzA5DyBnCHAHry_Vc-2Fj-8l18xJQzAEz6j0yw0a0BQgu9skMgFeFaBkckqMY15B3VvIZuXqZglXa0GTG6PxIB9-ZPlLrA1V0mPrkikElE5zq6WJ5Q3W-0y-X3uni8fmEHFjVR3P6O4_J2-3N6_V9sXy6e7heLAvNsU0F1xZMu1oprsECouGAvGyUbrWyFa6qpumYho5XhiNrVFNzzTohSlZa1QBjx-R85-tjcjJql4x-134cjU4SOYO2KTPpYkfaBP8xmZjk2k9hzLkkttjmJ7WoMkvsWDr4GIOxchPcoMK3RJDbQuVa_hUqt4VKwIw6Kxc7Ze7HfDoTtkHMqE3nwjZH592_Hj8H64DS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919588675</pqid></control><display><type>article</type><title>Surface tension models for a multi-material ALE code with AMR</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Wangyi ; Koniges, Alice ; Gott, Kevin ; Eder, David ; Barnard, John ; Friedman, Alex ; Masters, Nathan ; Fisher, Aaron</creator><creatorcontrib>Liu, Wangyi ; Koniges, Alice ; Gott, Kevin ; Eder, David ; Barnard, John ; Friedman, Alex ; Masters, Nathan ; Fisher, Aaron ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>•Surface tension models implemented in 3D multi-physics multi-material code ALE–AMR.•Diffuse-interface Kortewge-type surface tension model is shown to produce droplets.•Height function and volume-fraction interface reconstruction is optimum for EUV app.•Adding surface tension effects results in only a modest increase in computing cost.•Surface tension can impact droplet dynamics relevant to EUV lithography sources. A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. Based on the results, the height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2017.01.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>ALE ; AMR ; Computational fluid dynamics ; Computer simulation ; Deformation ; ENGINEERING ; Extreme ultraviolet radiation ; Finite element method ; Fluid flow ; Fragmentation ; Hydrodynamics ; Interface reconstruction ; Lithography ; Mathematical models ; MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Multi-physics modeling ; Plasmas ; Reconstruction ; Surface tension ; Three dimensional models</subject><ispartof>Computers &amp; fluids, 2017-06, Vol.151 (C), p.91-101</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 27, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-4cf0e9bba4c0f011e401428ac9caf51b588d3c0d45e4138a864c3d77232fa8033</citedby><cites>FETCH-LOGICAL-c419t-4cf0e9bba4c0f011e401428ac9caf51b588d3c0d45e4138a864c3d77232fa8033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2017.01.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1430982$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Wangyi</creatorcontrib><creatorcontrib>Koniges, Alice</creatorcontrib><creatorcontrib>Gott, Kevin</creatorcontrib><creatorcontrib>Eder, David</creatorcontrib><creatorcontrib>Barnard, John</creatorcontrib><creatorcontrib>Friedman, Alex</creatorcontrib><creatorcontrib>Masters, Nathan</creatorcontrib><creatorcontrib>Fisher, Aaron</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Surface tension models for a multi-material ALE code with AMR</title><title>Computers &amp; fluids</title><description>•Surface tension models implemented in 3D multi-physics multi-material code ALE–AMR.•Diffuse-interface Kortewge-type surface tension model is shown to produce droplets.•Height function and volume-fraction interface reconstruction is optimum for EUV app.•Adding surface tension effects results in only a modest increase in computing cost.•Surface tension can impact droplet dynamics relevant to EUV lithography sources. A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. Based on the results, the height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.</description><subject>ALE</subject><subject>AMR</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>ENGINEERING</subject><subject>Extreme ultraviolet radiation</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fragmentation</subject><subject>Hydrodynamics</subject><subject>Interface reconstruction</subject><subject>Lithography</subject><subject>Mathematical models</subject><subject>MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Multi-physics modeling</subject><subject>Plasmas</subject><subject>Reconstruction</subject><subject>Surface tension</subject><subject>Three dimensional models</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LxDAQDKLg-fEbDPrcc7dJm_bBh0P8ghPBj-eQSxPM0TZnkir-e3Oc-CoMLMvOzA5DyBnCHAHry_Vc-2Fj-8l18xJQzAEz6j0yw0a0BQgu9skMgFeFaBkckqMY15B3VvIZuXqZglXa0GTG6PxIB9-ZPlLrA1V0mPrkikElE5zq6WJ5Q3W-0y-X3uni8fmEHFjVR3P6O4_J2-3N6_V9sXy6e7heLAvNsU0F1xZMu1oprsECouGAvGyUbrWyFa6qpumYho5XhiNrVFNzzTohSlZa1QBjx-R85-tjcjJql4x-134cjU4SOYO2KTPpYkfaBP8xmZjk2k9hzLkkttjmJ7WoMkvsWDr4GIOxchPcoMK3RJDbQuVa_hUqt4VKwIw6Kxc7Ze7HfDoTtkHMqE3nwjZH592_Hj8H64DS</recordid><startdate>20170627</startdate><enddate>20170627</enddate><creator>Liu, Wangyi</creator><creator>Koniges, Alice</creator><creator>Gott, Kevin</creator><creator>Eder, David</creator><creator>Barnard, John</creator><creator>Friedman, Alex</creator><creator>Masters, Nathan</creator><creator>Fisher, Aaron</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170627</creationdate><title>Surface tension models for a multi-material ALE code with AMR</title><author>Liu, Wangyi ; Koniges, Alice ; Gott, Kevin ; Eder, David ; Barnard, John ; Friedman, Alex ; Masters, Nathan ; Fisher, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-4cf0e9bba4c0f011e401428ac9caf51b588d3c0d45e4138a864c3d77232fa8033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ALE</topic><topic>AMR</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>ENGINEERING</topic><topic>Extreme ultraviolet radiation</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fragmentation</topic><topic>Hydrodynamics</topic><topic>Interface reconstruction</topic><topic>Lithography</topic><topic>Mathematical models</topic><topic>MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Multi-physics modeling</topic><topic>Plasmas</topic><topic>Reconstruction</topic><topic>Surface tension</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wangyi</creatorcontrib><creatorcontrib>Koniges, Alice</creatorcontrib><creatorcontrib>Gott, Kevin</creatorcontrib><creatorcontrib>Eder, David</creatorcontrib><creatorcontrib>Barnard, John</creatorcontrib><creatorcontrib>Friedman, Alex</creatorcontrib><creatorcontrib>Masters, Nathan</creatorcontrib><creatorcontrib>Fisher, Aaron</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wangyi</au><au>Koniges, Alice</au><au>Gott, Kevin</au><au>Eder, David</au><au>Barnard, John</au><au>Friedman, Alex</au><au>Masters, Nathan</au><au>Fisher, Aaron</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface tension models for a multi-material ALE code with AMR</atitle><jtitle>Computers &amp; fluids</jtitle><date>2017-06-27</date><risdate>2017</risdate><volume>151</volume><issue>C</issue><spage>91</spage><epage>101</epage><pages>91-101</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•Surface tension models implemented in 3D multi-physics multi-material code ALE–AMR.•Diffuse-interface Kortewge-type surface tension model is shown to produce droplets.•Height function and volume-fraction interface reconstruction is optimum for EUV app.•Adding surface tension effects results in only a modest increase in computing cost.•Surface tension can impact droplet dynamics relevant to EUV lithography sources. A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. Based on the results, the height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2017.01.016</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2017-06, Vol.151 (C), p.91-101
issn 0045-7930
1879-0747
language eng
recordid cdi_osti_scitechconnect_1430982
source Elsevier ScienceDirect Journals Complete
subjects ALE
AMR
Computational fluid dynamics
Computer simulation
Deformation
ENGINEERING
Extreme ultraviolet radiation
Finite element method
Fluid flow
Fragmentation
Hydrodynamics
Interface reconstruction
Lithography
Mathematical models
MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Multi-physics modeling
Plasmas
Reconstruction
Surface tension
Three dimensional models
title Surface tension models for a multi-material ALE code with AMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20tension%20models%20for%20a%20multi-material%20ALE%20code%20with%20AMR&rft.jtitle=Computers%20&%20fluids&rft.au=Liu,%20Wangyi&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2017-06-27&rft.volume=151&rft.issue=C&rft.spage=91&rft.epage=101&rft.pages=91-101&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2017.01.016&rft_dat=%3Cproquest_osti_%3E1919588675%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919588675&rft_id=info:pmid/&rft_els_id=S0045793017300294&rfr_iscdi=true