Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis

Sustainable energy can be harnessed from natural or engineered salinity gradients using a process known as pressure-retarded osmosis (PRO). One major challenge is the lack of a suitable semi-permeable membrane that can withstand the pressure of the process yet still employ a support layer that is th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination 2016-12, Vol.399 (C), p.96-104
Hauptverfasser: Huang, Liwei, Arena, Jason T., Meyering, Mark T., Hamlin, Thomas J., McCutcheon, Jeffrey R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue C
container_start_page 96
container_title Desalination
container_volume 399
creator Huang, Liwei
Arena, Jason T.
Meyering, Mark T.
Hamlin, Thomas J.
McCutcheon, Jeffrey R.
description Sustainable energy can be harnessed from natural or engineered salinity gradients using a process known as pressure-retarded osmosis (PRO). One major challenge is the lack of a suitable semi-permeable membrane that can withstand the pressure of the process yet still employ a support layer that is thin and compaction resistant in order to limit internal concentration polarization. In this study, we report on a roll-to-roll produced thin film composite (TFC) PRO membrane support platform using a thin “multi-zone” nylon 6,6 structure integrated with a nonwoven scrim that enhances mechanical properties and compaction resistance. Two types of TFC membranes with different permselectivities were fabricated based on this support via in-situ interfacial polymerization and then tested under real PRO conditions. Overall our membranes exhibit higher compaction resistance than a commercial FO membrane evidenced by the less severe structural parameter increase under pressure. In addition, our TFC membranes were able to capture 65–81% of theoretical maximum power density performances in comparison to only 50% of the more compactable commercial FO membrane. These results demonstrate that compaction during PRO can substantially reduce power density and the effect can be lessened with appropriate membrane design. •Membrane compaction in PRO causes increases in structural parameter.•Most osmotic membranes are not compaction resistant under PRO conditions.•A membrane support with an integrated nonwoven scrim is proposed to reduce compaction.•This support is manufactured on a roll-to-roll casting line at 3M Purification.•The membrane shows more compaction resistance than a commercial TFC FO membrane.
doi_str_mv 10.1016/j.desal.2016.07.034
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1430395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916416309377</els_id><sourcerecordid>1827928045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-10f852645ba628429f5ec7c0117dbbedc43c3258e76b2bd65992ecb5b6eff55e3</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0EEpfCE7CxWLEgwf9xFixQVShSJTZlbSX2RPVVEgePg1SeHofLGnU1M9Z3Rmd8CHnLWcsZNx_PbQAc5lbUoWVdy6R6Rk7cdrJRyqjn5MQY503PjXpJXiGe6yh6KU8k3A9xThkCXfa5xOZ3Wmu_Ps5ppeaDobhvW8qlvpWHuNIpzgv1adkSxgJ0gWXMwwpIp5TplgFxz0AzlCGHqkm4VBBfkxfTMCO8-VevyI8vN_fXt83d96_frj_fNV51tjScTVYLo_Q4GGGV6CcNvvPVeRfGEYJX0kuhLXRmFGMwuu8F-FGPBqZJa5BX5N1lb8ISHfpq0T_4tK7gi-NKMtnrCr2_QFtOP3fA4paIHua53pF2dNwqbUWvtX0CKrpeWKaOrfKC-pwQM0xuy3EZ8qPjzB0ZubP7m5E7MnKsczWjqvp0UUH9lV8R8mEaVg8h5sNzSPG_-j_-X5wq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827928045</pqid></control><display><type>article</type><title>Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Huang, Liwei ; Arena, Jason T. ; Meyering, Mark T. ; Hamlin, Thomas J. ; McCutcheon, Jeffrey R.</creator><creatorcontrib>Huang, Liwei ; Arena, Jason T. ; Meyering, Mark T. ; Hamlin, Thomas J. ; McCutcheon, Jeffrey R.</creatorcontrib><description>Sustainable energy can be harnessed from natural or engineered salinity gradients using a process known as pressure-retarded osmosis (PRO). One major challenge is the lack of a suitable semi-permeable membrane that can withstand the pressure of the process yet still employ a support layer that is thin and compaction resistant in order to limit internal concentration polarization. In this study, we report on a roll-to-roll produced thin film composite (TFC) PRO membrane support platform using a thin “multi-zone” nylon 6,6 structure integrated with a nonwoven scrim that enhances mechanical properties and compaction resistance. Two types of TFC membranes with different permselectivities were fabricated based on this support via in-situ interfacial polymerization and then tested under real PRO conditions. Overall our membranes exhibit higher compaction resistance than a commercial FO membrane evidenced by the less severe structural parameter increase under pressure. In addition, our TFC membranes were able to capture 65–81% of theoretical maximum power density performances in comparison to only 50% of the more compactable commercial FO membrane. These results demonstrate that compaction during PRO can substantially reduce power density and the effect can be lessened with appropriate membrane design. •Membrane compaction in PRO causes increases in structural parameter.•Most osmotic membranes are not compaction resistant under PRO conditions.•A membrane support with an integrated nonwoven scrim is proposed to reduce compaction.•This support is manufactured on a roll-to-roll casting line at 3M Purification.•The membrane shows more compaction resistance than a commercial TFC FO membrane.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2016.07.034</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Design engineering ; Internal concentration polarization ; Maximum power density ; Membrane compaction ; Membranes ; Nylon 6,6 ; Nylons ; Osmosis ; Polymer matrix composites ; Pressure retarded osmosis ; Salinity ; Thin film composite ; Thin films</subject><ispartof>Desalination, 2016-12, Vol.399 (C), p.96-104</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-10f852645ba628429f5ec7c0117dbbedc43c3258e76b2bd65992ecb5b6eff55e3</citedby><cites>FETCH-LOGICAL-c478t-10f852645ba628429f5ec7c0117dbbedc43c3258e76b2bd65992ecb5b6eff55e3</cites><orcidid>0000-0002-5638-4926 ; 0000000256384926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.desal.2016.07.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1430395$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Liwei</creatorcontrib><creatorcontrib>Arena, Jason T.</creatorcontrib><creatorcontrib>Meyering, Mark T.</creatorcontrib><creatorcontrib>Hamlin, Thomas J.</creatorcontrib><creatorcontrib>McCutcheon, Jeffrey R.</creatorcontrib><title>Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis</title><title>Desalination</title><description>Sustainable energy can be harnessed from natural or engineered salinity gradients using a process known as pressure-retarded osmosis (PRO). One major challenge is the lack of a suitable semi-permeable membrane that can withstand the pressure of the process yet still employ a support layer that is thin and compaction resistant in order to limit internal concentration polarization. In this study, we report on a roll-to-roll produced thin film composite (TFC) PRO membrane support platform using a thin “multi-zone” nylon 6,6 structure integrated with a nonwoven scrim that enhances mechanical properties and compaction resistance. Two types of TFC membranes with different permselectivities were fabricated based on this support via in-situ interfacial polymerization and then tested under real PRO conditions. Overall our membranes exhibit higher compaction resistance than a commercial FO membrane evidenced by the less severe structural parameter increase under pressure. In addition, our TFC membranes were able to capture 65–81% of theoretical maximum power density performances in comparison to only 50% of the more compactable commercial FO membrane. These results demonstrate that compaction during PRO can substantially reduce power density and the effect can be lessened with appropriate membrane design. •Membrane compaction in PRO causes increases in structural parameter.•Most osmotic membranes are not compaction resistant under PRO conditions.•A membrane support with an integrated nonwoven scrim is proposed to reduce compaction.•This support is manufactured on a roll-to-roll casting line at 3M Purification.•The membrane shows more compaction resistance than a commercial TFC FO membrane.</description><subject>Design engineering</subject><subject>Internal concentration polarization</subject><subject>Maximum power density</subject><subject>Membrane compaction</subject><subject>Membranes</subject><subject>Nylon 6,6</subject><subject>Nylons</subject><subject>Osmosis</subject><subject>Polymer matrix composites</subject><subject>Pressure retarded osmosis</subject><subject>Salinity</subject><subject>Thin film composite</subject><subject>Thin films</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1TAQhS0EEpfCE7CxWLEgwf9xFixQVShSJTZlbSX2RPVVEgePg1SeHofLGnU1M9Z3Rmd8CHnLWcsZNx_PbQAc5lbUoWVdy6R6Rk7cdrJRyqjn5MQY503PjXpJXiGe6yh6KU8k3A9xThkCXfa5xOZ3Wmu_Ps5ppeaDobhvW8qlvpWHuNIpzgv1adkSxgJ0gWXMwwpIp5TplgFxz0AzlCGHqkm4VBBfkxfTMCO8-VevyI8vN_fXt83d96_frj_fNV51tjScTVYLo_Q4GGGV6CcNvvPVeRfGEYJX0kuhLXRmFGMwuu8F-FGPBqZJa5BX5N1lb8ISHfpq0T_4tK7gi-NKMtnrCr2_QFtOP3fA4paIHua53pF2dNwqbUWvtX0CKrpeWKaOrfKC-pwQM0xuy3EZ8qPjzB0ZubP7m5E7MnKsczWjqvp0UUH9lV8R8mEaVg8h5sNzSPG_-j_-X5wq</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Huang, Liwei</creator><creator>Arena, Jason T.</creator><creator>Meyering, Mark T.</creator><creator>Hamlin, Thomas J.</creator><creator>McCutcheon, Jeffrey R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5638-4926</orcidid><orcidid>https://orcid.org/0000000256384926</orcidid></search><sort><creationdate>20161201</creationdate><title>Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis</title><author>Huang, Liwei ; Arena, Jason T. ; Meyering, Mark T. ; Hamlin, Thomas J. ; McCutcheon, Jeffrey R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-10f852645ba628429f5ec7c0117dbbedc43c3258e76b2bd65992ecb5b6eff55e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Design engineering</topic><topic>Internal concentration polarization</topic><topic>Maximum power density</topic><topic>Membrane compaction</topic><topic>Membranes</topic><topic>Nylon 6,6</topic><topic>Nylons</topic><topic>Osmosis</topic><topic>Polymer matrix composites</topic><topic>Pressure retarded osmosis</topic><topic>Salinity</topic><topic>Thin film composite</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Liwei</creatorcontrib><creatorcontrib>Arena, Jason T.</creatorcontrib><creatorcontrib>Meyering, Mark T.</creatorcontrib><creatorcontrib>Hamlin, Thomas J.</creatorcontrib><creatorcontrib>McCutcheon, Jeffrey R.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Liwei</au><au>Arena, Jason T.</au><au>Meyering, Mark T.</au><au>Hamlin, Thomas J.</au><au>McCutcheon, Jeffrey R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis</atitle><jtitle>Desalination</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>399</volume><issue>C</issue><spage>96</spage><epage>104</epage><pages>96-104</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><abstract>Sustainable energy can be harnessed from natural or engineered salinity gradients using a process known as pressure-retarded osmosis (PRO). One major challenge is the lack of a suitable semi-permeable membrane that can withstand the pressure of the process yet still employ a support layer that is thin and compaction resistant in order to limit internal concentration polarization. In this study, we report on a roll-to-roll produced thin film composite (TFC) PRO membrane support platform using a thin “multi-zone” nylon 6,6 structure integrated with a nonwoven scrim that enhances mechanical properties and compaction resistance. Two types of TFC membranes with different permselectivities were fabricated based on this support via in-situ interfacial polymerization and then tested under real PRO conditions. Overall our membranes exhibit higher compaction resistance than a commercial FO membrane evidenced by the less severe structural parameter increase under pressure. In addition, our TFC membranes were able to capture 65–81% of theoretical maximum power density performances in comparison to only 50% of the more compactable commercial FO membrane. These results demonstrate that compaction during PRO can substantially reduce power density and the effect can be lessened with appropriate membrane design. •Membrane compaction in PRO causes increases in structural parameter.•Most osmotic membranes are not compaction resistant under PRO conditions.•A membrane support with an integrated nonwoven scrim is proposed to reduce compaction.•This support is manufactured on a roll-to-roll casting line at 3M Purification.•The membrane shows more compaction resistance than a commercial TFC FO membrane.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2016.07.034</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5638-4926</orcidid><orcidid>https://orcid.org/0000000256384926</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-9164
ispartof Desalination, 2016-12, Vol.399 (C), p.96-104
issn 0011-9164
1873-4464
language eng
recordid cdi_osti_scitechconnect_1430395
source ScienceDirect Journals (5 years ago - present)
subjects Design engineering
Internal concentration polarization
Maximum power density
Membrane compaction
Membranes
Nylon 6,6
Nylons
Osmosis
Polymer matrix composites
Pressure retarded osmosis
Salinity
Thin film composite
Thin films
title Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailored%20multi-zoned%20nylon%206,6%20supported%20thin%20film%20composite%20membranes%20for%20pressure%20retarded%20osmosis&rft.jtitle=Desalination&rft.au=Huang,%20Liwei&rft.date=2016-12-01&rft.volume=399&rft.issue=C&rft.spage=96&rft.epage=104&rft.pages=96-104&rft.issn=0011-9164&rft.eissn=1873-4464&rft_id=info:doi/10.1016/j.desal.2016.07.034&rft_dat=%3Cproquest_osti_%3E1827928045%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827928045&rft_id=info:pmid/&rft_els_id=S0011916416309377&rfr_iscdi=true