Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis
Sustainable energy can be harnessed from natural or engineered salinity gradients using a process known as pressure-retarded osmosis (PRO). One major challenge is the lack of a suitable semi-permeable membrane that can withstand the pressure of the process yet still employ a support layer that is th...
Gespeichert in:
Veröffentlicht in: | Desalination 2016-12, Vol.399 (C), p.96-104 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | C |
container_start_page | 96 |
container_title | Desalination |
container_volume | 399 |
creator | Huang, Liwei Arena, Jason T. Meyering, Mark T. Hamlin, Thomas J. McCutcheon, Jeffrey R. |
description | Sustainable energy can be harnessed from natural or engineered salinity gradients using a process known as pressure-retarded osmosis (PRO). One major challenge is the lack of a suitable semi-permeable membrane that can withstand the pressure of the process yet still employ a support layer that is thin and compaction resistant in order to limit internal concentration polarization. In this study, we report on a roll-to-roll produced thin film composite (TFC) PRO membrane support platform using a thin “multi-zone” nylon 6,6 structure integrated with a nonwoven scrim that enhances mechanical properties and compaction resistance. Two types of TFC membranes with different permselectivities were fabricated based on this support via in-situ interfacial polymerization and then tested under real PRO conditions. Overall our membranes exhibit higher compaction resistance than a commercial FO membrane evidenced by the less severe structural parameter increase under pressure. In addition, our TFC membranes were able to capture 65–81% of theoretical maximum power density performances in comparison to only 50% of the more compactable commercial FO membrane. These results demonstrate that compaction during PRO can substantially reduce power density and the effect can be lessened with appropriate membrane design.
•Membrane compaction in PRO causes increases in structural parameter.•Most osmotic membranes are not compaction resistant under PRO conditions.•A membrane support with an integrated nonwoven scrim is proposed to reduce compaction.•This support is manufactured on a roll-to-roll casting line at 3M Purification.•The membrane shows more compaction resistance than a commercial TFC FO membrane. |
doi_str_mv | 10.1016/j.desal.2016.07.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1430395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916416309377</els_id><sourcerecordid>1827928045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-10f852645ba628429f5ec7c0117dbbedc43c3258e76b2bd65992ecb5b6eff55e3</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0EEpfCE7CxWLEgwf9xFixQVShSJTZlbSX2RPVVEgePg1SeHofLGnU1M9Z3Rmd8CHnLWcsZNx_PbQAc5lbUoWVdy6R6Rk7cdrJRyqjn5MQY503PjXpJXiGe6yh6KU8k3A9xThkCXfa5xOZ3Wmu_Ps5ppeaDobhvW8qlvpWHuNIpzgv1adkSxgJ0gWXMwwpIp5TplgFxz0AzlCGHqkm4VBBfkxfTMCO8-VevyI8vN_fXt83d96_frj_fNV51tjScTVYLo_Q4GGGV6CcNvvPVeRfGEYJX0kuhLXRmFGMwuu8F-FGPBqZJa5BX5N1lb8ISHfpq0T_4tK7gi-NKMtnrCr2_QFtOP3fA4paIHua53pF2dNwqbUWvtX0CKrpeWKaOrfKC-pwQM0xuy3EZ8qPjzB0ZubP7m5E7MnKsczWjqvp0UUH9lV8R8mEaVg8h5sNzSPG_-j_-X5wq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827928045</pqid></control><display><type>article</type><title>Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Huang, Liwei ; Arena, Jason T. ; Meyering, Mark T. ; Hamlin, Thomas J. ; McCutcheon, Jeffrey R.</creator><creatorcontrib>Huang, Liwei ; Arena, Jason T. ; Meyering, Mark T. ; Hamlin, Thomas J. ; McCutcheon, Jeffrey R.</creatorcontrib><description>Sustainable energy can be harnessed from natural or engineered salinity gradients using a process known as pressure-retarded osmosis (PRO). One major challenge is the lack of a suitable semi-permeable membrane that can withstand the pressure of the process yet still employ a support layer that is thin and compaction resistant in order to limit internal concentration polarization. In this study, we report on a roll-to-roll produced thin film composite (TFC) PRO membrane support platform using a thin “multi-zone” nylon 6,6 structure integrated with a nonwoven scrim that enhances mechanical properties and compaction resistance. Two types of TFC membranes with different permselectivities were fabricated based on this support via in-situ interfacial polymerization and then tested under real PRO conditions. Overall our membranes exhibit higher compaction resistance than a commercial FO membrane evidenced by the less severe structural parameter increase under pressure. In addition, our TFC membranes were able to capture 65–81% of theoretical maximum power density performances in comparison to only 50% of the more compactable commercial FO membrane. These results demonstrate that compaction during PRO can substantially reduce power density and the effect can be lessened with appropriate membrane design.
•Membrane compaction in PRO causes increases in structural parameter.•Most osmotic membranes are not compaction resistant under PRO conditions.•A membrane support with an integrated nonwoven scrim is proposed to reduce compaction.•This support is manufactured on a roll-to-roll casting line at 3M Purification.•The membrane shows more compaction resistance than a commercial TFC FO membrane.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2016.07.034</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Design engineering ; Internal concentration polarization ; Maximum power density ; Membrane compaction ; Membranes ; Nylon 6,6 ; Nylons ; Osmosis ; Polymer matrix composites ; Pressure retarded osmosis ; Salinity ; Thin film composite ; Thin films</subject><ispartof>Desalination, 2016-12, Vol.399 (C), p.96-104</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-10f852645ba628429f5ec7c0117dbbedc43c3258e76b2bd65992ecb5b6eff55e3</citedby><cites>FETCH-LOGICAL-c478t-10f852645ba628429f5ec7c0117dbbedc43c3258e76b2bd65992ecb5b6eff55e3</cites><orcidid>0000-0002-5638-4926 ; 0000000256384926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.desal.2016.07.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1430395$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Liwei</creatorcontrib><creatorcontrib>Arena, Jason T.</creatorcontrib><creatorcontrib>Meyering, Mark T.</creatorcontrib><creatorcontrib>Hamlin, Thomas J.</creatorcontrib><creatorcontrib>McCutcheon, Jeffrey R.</creatorcontrib><title>Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis</title><title>Desalination</title><description>Sustainable energy can be harnessed from natural or engineered salinity gradients using a process known as pressure-retarded osmosis (PRO). One major challenge is the lack of a suitable semi-permeable membrane that can withstand the pressure of the process yet still employ a support layer that is thin and compaction resistant in order to limit internal concentration polarization. In this study, we report on a roll-to-roll produced thin film composite (TFC) PRO membrane support platform using a thin “multi-zone” nylon 6,6 structure integrated with a nonwoven scrim that enhances mechanical properties and compaction resistance. Two types of TFC membranes with different permselectivities were fabricated based on this support via in-situ interfacial polymerization and then tested under real PRO conditions. Overall our membranes exhibit higher compaction resistance than a commercial FO membrane evidenced by the less severe structural parameter increase under pressure. In addition, our TFC membranes were able to capture 65–81% of theoretical maximum power density performances in comparison to only 50% of the more compactable commercial FO membrane. These results demonstrate that compaction during PRO can substantially reduce power density and the effect can be lessened with appropriate membrane design.
•Membrane compaction in PRO causes increases in structural parameter.•Most osmotic membranes are not compaction resistant under PRO conditions.•A membrane support with an integrated nonwoven scrim is proposed to reduce compaction.•This support is manufactured on a roll-to-roll casting line at 3M Purification.•The membrane shows more compaction resistance than a commercial TFC FO membrane.</description><subject>Design engineering</subject><subject>Internal concentration polarization</subject><subject>Maximum power density</subject><subject>Membrane compaction</subject><subject>Membranes</subject><subject>Nylon 6,6</subject><subject>Nylons</subject><subject>Osmosis</subject><subject>Polymer matrix composites</subject><subject>Pressure retarded osmosis</subject><subject>Salinity</subject><subject>Thin film composite</subject><subject>Thin films</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1TAQhS0EEpfCE7CxWLEgwf9xFixQVShSJTZlbSX2RPVVEgePg1SeHofLGnU1M9Z3Rmd8CHnLWcsZNx_PbQAc5lbUoWVdy6R6Rk7cdrJRyqjn5MQY503PjXpJXiGe6yh6KU8k3A9xThkCXfa5xOZ3Wmu_Ps5ppeaDobhvW8qlvpWHuNIpzgv1adkSxgJ0gWXMwwpIp5TplgFxz0AzlCGHqkm4VBBfkxfTMCO8-VevyI8vN_fXt83d96_frj_fNV51tjScTVYLo_Q4GGGV6CcNvvPVeRfGEYJX0kuhLXRmFGMwuu8F-FGPBqZJa5BX5N1lb8ISHfpq0T_4tK7gi-NKMtnrCr2_QFtOP3fA4paIHua53pF2dNwqbUWvtX0CKrpeWKaOrfKC-pwQM0xuy3EZ8qPjzB0ZubP7m5E7MnKsczWjqvp0UUH9lV8R8mEaVg8h5sNzSPG_-j_-X5wq</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Huang, Liwei</creator><creator>Arena, Jason T.</creator><creator>Meyering, Mark T.</creator><creator>Hamlin, Thomas J.</creator><creator>McCutcheon, Jeffrey R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5638-4926</orcidid><orcidid>https://orcid.org/0000000256384926</orcidid></search><sort><creationdate>20161201</creationdate><title>Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis</title><author>Huang, Liwei ; Arena, Jason T. ; Meyering, Mark T. ; Hamlin, Thomas J. ; McCutcheon, Jeffrey R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-10f852645ba628429f5ec7c0117dbbedc43c3258e76b2bd65992ecb5b6eff55e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Design engineering</topic><topic>Internal concentration polarization</topic><topic>Maximum power density</topic><topic>Membrane compaction</topic><topic>Membranes</topic><topic>Nylon 6,6</topic><topic>Nylons</topic><topic>Osmosis</topic><topic>Polymer matrix composites</topic><topic>Pressure retarded osmosis</topic><topic>Salinity</topic><topic>Thin film composite</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Liwei</creatorcontrib><creatorcontrib>Arena, Jason T.</creatorcontrib><creatorcontrib>Meyering, Mark T.</creatorcontrib><creatorcontrib>Hamlin, Thomas J.</creatorcontrib><creatorcontrib>McCutcheon, Jeffrey R.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Liwei</au><au>Arena, Jason T.</au><au>Meyering, Mark T.</au><au>Hamlin, Thomas J.</au><au>McCutcheon, Jeffrey R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis</atitle><jtitle>Desalination</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>399</volume><issue>C</issue><spage>96</spage><epage>104</epage><pages>96-104</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><abstract>Sustainable energy can be harnessed from natural or engineered salinity gradients using a process known as pressure-retarded osmosis (PRO). One major challenge is the lack of a suitable semi-permeable membrane that can withstand the pressure of the process yet still employ a support layer that is thin and compaction resistant in order to limit internal concentration polarization. In this study, we report on a roll-to-roll produced thin film composite (TFC) PRO membrane support platform using a thin “multi-zone” nylon 6,6 structure integrated with a nonwoven scrim that enhances mechanical properties and compaction resistance. Two types of TFC membranes with different permselectivities were fabricated based on this support via in-situ interfacial polymerization and then tested under real PRO conditions. Overall our membranes exhibit higher compaction resistance than a commercial FO membrane evidenced by the less severe structural parameter increase under pressure. In addition, our TFC membranes were able to capture 65–81% of theoretical maximum power density performances in comparison to only 50% of the more compactable commercial FO membrane. These results demonstrate that compaction during PRO can substantially reduce power density and the effect can be lessened with appropriate membrane design.
•Membrane compaction in PRO causes increases in structural parameter.•Most osmotic membranes are not compaction resistant under PRO conditions.•A membrane support with an integrated nonwoven scrim is proposed to reduce compaction.•This support is manufactured on a roll-to-roll casting line at 3M Purification.•The membrane shows more compaction resistance than a commercial TFC FO membrane.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2016.07.034</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5638-4926</orcidid><orcidid>https://orcid.org/0000000256384926</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-9164 |
ispartof | Desalination, 2016-12, Vol.399 (C), p.96-104 |
issn | 0011-9164 1873-4464 |
language | eng |
recordid | cdi_osti_scitechconnect_1430395 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Design engineering Internal concentration polarization Maximum power density Membrane compaction Membranes Nylon 6,6 Nylons Osmosis Polymer matrix composites Pressure retarded osmosis Salinity Thin film composite Thin films |
title | Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded osmosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailored%20multi-zoned%20nylon%206,6%20supported%20thin%20film%20composite%20membranes%20for%20pressure%20retarded%20osmosis&rft.jtitle=Desalination&rft.au=Huang,%20Liwei&rft.date=2016-12-01&rft.volume=399&rft.issue=C&rft.spage=96&rft.epage=104&rft.pages=96-104&rft.issn=0011-9164&rft.eissn=1873-4464&rft_id=info:doi/10.1016/j.desal.2016.07.034&rft_dat=%3Cproquest_osti_%3E1827928045%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827928045&rft_id=info:pmid/&rft_els_id=S0011916416309377&rfr_iscdi=true |