Excitations Partition into Two Distinct Populations in Bulk Perovskites

Organolead halide perovskites convert optical excitations to charge carriers with remarkable efficiency in optoelectronic devices. Previous research predominantly documents dynamics in perovskite thin films; however, extensive disorder in this platform may obscure the observed carrier dynamics. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2018-03, Vol.6 (5), p.n/a
Hauptverfasser: Wang, Lili, Brawand, Nicholas P., Vörös, Márton, Dahlberg, Peter D., Otto, John P., Williams, Nicholas E., Tiede, David M., Galli, Giulia, Engel, Gregory S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Advanced optical materials
container_volume 6
creator Wang, Lili
Brawand, Nicholas P.
Vörös, Márton
Dahlberg, Peter D.
Otto, John P.
Williams, Nicholas E.
Tiede, David M.
Galli, Giulia
Engel, Gregory S.
description Organolead halide perovskites convert optical excitations to charge carriers with remarkable efficiency in optoelectronic devices. Previous research predominantly documents dynamics in perovskite thin films; however, extensive disorder in this platform may obscure the observed carrier dynamics. Here, carrier dynamics in perovskite single‐domain single crystals is examined by performing transient absorption spectroscopy in a transmissive geometry. Two distinct sets of carrier populations that coexist at the same radiation fluence, but display different decay dynamics, are observed: one dominated by second‐order recombination and the other by third‐order recombination. Based on ab initio simulations, this observation is found to be most consistent with the hypothesis that free carriers and localized carriers coexist due to polaron formation. The calculations suggest that polarons will form in both CH3NH3PbBr3 and CH3NH3PbI3 crystals, but that they are more pronounced in CH3NH3PbBr3. Single‐crystal CH3NH3PbBr3 could represent the key to understanding the impact of polarons on the transport properties of perovskite optoelectronic devices. Transient absorption spectroscopy on perovskite single‐domain single crystals reveals excitations partition into two distinct sets of carrier populations that coexist at the same radiation fluence, but decay differently. Ab initio calculations suggest that this observation is best explained by the coexistence of free carriers and localized carriers due to polaron formation.
doi_str_mv 10.1002/adom.201700975
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1427475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010299881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3845-cc99a62db969be4bcf94aa07d5ee26d500cc2f716e0b19a32fd1bf5d0bb9cb0d3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiQS5et7oeXHa_aJHBEQTDBzw3LTdbiwsW2y7Iv_ekiXqzdPMJM87efMgdIthiAHIAy_NbkgAFwC0yC5Qj2CaxRgKfPlnv0YD5zYAEI6EpkUPzWdfUnvutWlctOLW69Ma6cabaH0w0VQ7rxvpo5XZt_WZ00302NbbaKWs-XRb7ZW7QVcVr50anGcfvT3N1pPneLGcv0zGi1gmozSLpaSU56QUNKdCpUJWNOUcijJTiuRlBiAlqQqcKxCY8oRUJRZVVoIQVAookz666_6a0Iu50F3Jd2maRknPcEqKtMgCdN9Be2s-WuU825jWNqEXC4qAUDoa4UANO0pa45xVFdtbveP2yDCwk1R2ksp-pIYA7QIHXavjPzQbT5evv9lvqD57xQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010299881</pqid></control><display><type>article</type><title>Excitations Partition into Two Distinct Populations in Bulk Perovskites</title><source>Wiley-Blackwell Journals</source><creator>Wang, Lili ; Brawand, Nicholas P. ; Vörös, Márton ; Dahlberg, Peter D. ; Otto, John P. ; Williams, Nicholas E. ; Tiede, David M. ; Galli, Giulia ; Engel, Gregory S.</creator><creatorcontrib>Wang, Lili ; Brawand, Nicholas P. ; Vörös, Márton ; Dahlberg, Peter D. ; Otto, John P. ; Williams, Nicholas E. ; Tiede, David M. ; Galli, Giulia ; Engel, Gregory S. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Organolead halide perovskites convert optical excitations to charge carriers with remarkable efficiency in optoelectronic devices. Previous research predominantly documents dynamics in perovskite thin films; however, extensive disorder in this platform may obscure the observed carrier dynamics. Here, carrier dynamics in perovskite single‐domain single crystals is examined by performing transient absorption spectroscopy in a transmissive geometry. Two distinct sets of carrier populations that coexist at the same radiation fluence, but display different decay dynamics, are observed: one dominated by second‐order recombination and the other by third‐order recombination. Based on ab initio simulations, this observation is found to be most consistent with the hypothesis that free carriers and localized carriers coexist due to polaron formation. The calculations suggest that polarons will form in both CH3NH3PbBr3 and CH3NH3PbI3 crystals, but that they are more pronounced in CH3NH3PbBr3. Single‐crystal CH3NH3PbBr3 could represent the key to understanding the impact of polarons on the transport properties of perovskite optoelectronic devices. Transient absorption spectroscopy on perovskite single‐domain single crystals reveals excitations partition into two distinct sets of carrier populations that coexist at the same radiation fluence, but decay differently. Ab initio calculations suggest that this observation is best explained by the coexistence of free carriers and localized carriers due to polaron formation.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201700975</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bulk carrier dynamics ; Charge efficiency ; Current carriers ; Dynamics ; MATERIALS SCIENCE ; Optics ; Optoelectronic devices ; Organolead compounds ; organolead halide perovskites ; Perovskites ; polaron formation ; Polarons ; Populations ; Single crystals ; Thin films ; transient absorption</subject><ispartof>Advanced optical materials, 2018-03, Vol.6 (5), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3845-cc99a62db969be4bcf94aa07d5ee26d500cc2f716e0b19a32fd1bf5d0bb9cb0d3</citedby><cites>FETCH-LOGICAL-c3845-cc99a62db969be4bcf94aa07d5ee26d500cc2f716e0b19a32fd1bf5d0bb9cb0d3</cites><orcidid>0000-0002-6740-5243 ; 0000000267405243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.201700975$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.201700975$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1427475$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Brawand, Nicholas P.</creatorcontrib><creatorcontrib>Vörös, Márton</creatorcontrib><creatorcontrib>Dahlberg, Peter D.</creatorcontrib><creatorcontrib>Otto, John P.</creatorcontrib><creatorcontrib>Williams, Nicholas E.</creatorcontrib><creatorcontrib>Tiede, David M.</creatorcontrib><creatorcontrib>Galli, Giulia</creatorcontrib><creatorcontrib>Engel, Gregory S.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Excitations Partition into Two Distinct Populations in Bulk Perovskites</title><title>Advanced optical materials</title><description>Organolead halide perovskites convert optical excitations to charge carriers with remarkable efficiency in optoelectronic devices. Previous research predominantly documents dynamics in perovskite thin films; however, extensive disorder in this platform may obscure the observed carrier dynamics. Here, carrier dynamics in perovskite single‐domain single crystals is examined by performing transient absorption spectroscopy in a transmissive geometry. Two distinct sets of carrier populations that coexist at the same radiation fluence, but display different decay dynamics, are observed: one dominated by second‐order recombination and the other by third‐order recombination. Based on ab initio simulations, this observation is found to be most consistent with the hypothesis that free carriers and localized carriers coexist due to polaron formation. The calculations suggest that polarons will form in both CH3NH3PbBr3 and CH3NH3PbI3 crystals, but that they are more pronounced in CH3NH3PbBr3. Single‐crystal CH3NH3PbBr3 could represent the key to understanding the impact of polarons on the transport properties of perovskite optoelectronic devices. Transient absorption spectroscopy on perovskite single‐domain single crystals reveals excitations partition into two distinct sets of carrier populations that coexist at the same radiation fluence, but decay differently. Ab initio calculations suggest that this observation is best explained by the coexistence of free carriers and localized carriers due to polaron formation.</description><subject>bulk carrier dynamics</subject><subject>Charge efficiency</subject><subject>Current carriers</subject><subject>Dynamics</subject><subject>MATERIALS SCIENCE</subject><subject>Optics</subject><subject>Optoelectronic devices</subject><subject>Organolead compounds</subject><subject>organolead halide perovskites</subject><subject>Perovskites</subject><subject>polaron formation</subject><subject>Polarons</subject><subject>Populations</subject><subject>Single crystals</subject><subject>Thin films</subject><subject>transient absorption</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiQS5et7oeXHa_aJHBEQTDBzw3LTdbiwsW2y7Iv_ekiXqzdPMJM87efMgdIthiAHIAy_NbkgAFwC0yC5Qj2CaxRgKfPlnv0YD5zYAEI6EpkUPzWdfUnvutWlctOLW69Ma6cabaH0w0VQ7rxvpo5XZt_WZ00302NbbaKWs-XRb7ZW7QVcVr50anGcfvT3N1pPneLGcv0zGi1gmozSLpaSU56QUNKdCpUJWNOUcijJTiuRlBiAlqQqcKxCY8oRUJRZVVoIQVAookz666_6a0Iu50F3Jd2maRknPcEqKtMgCdN9Be2s-WuU825jWNqEXC4qAUDoa4UANO0pa45xVFdtbveP2yDCwk1R2ksp-pIYA7QIHXavjPzQbT5evv9lvqD57xQ</recordid><startdate>20180305</startdate><enddate>20180305</enddate><creator>Wang, Lili</creator><creator>Brawand, Nicholas P.</creator><creator>Vörös, Márton</creator><creator>Dahlberg, Peter D.</creator><creator>Otto, John P.</creator><creator>Williams, Nicholas E.</creator><creator>Tiede, David M.</creator><creator>Galli, Giulia</creator><creator>Engel, Gregory S.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6740-5243</orcidid><orcidid>https://orcid.org/0000000267405243</orcidid></search><sort><creationdate>20180305</creationdate><title>Excitations Partition into Two Distinct Populations in Bulk Perovskites</title><author>Wang, Lili ; Brawand, Nicholas P. ; Vörös, Márton ; Dahlberg, Peter D. ; Otto, John P. ; Williams, Nicholas E. ; Tiede, David M. ; Galli, Giulia ; Engel, Gregory S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3845-cc99a62db969be4bcf94aa07d5ee26d500cc2f716e0b19a32fd1bf5d0bb9cb0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>bulk carrier dynamics</topic><topic>Charge efficiency</topic><topic>Current carriers</topic><topic>Dynamics</topic><topic>MATERIALS SCIENCE</topic><topic>Optics</topic><topic>Optoelectronic devices</topic><topic>Organolead compounds</topic><topic>organolead halide perovskites</topic><topic>Perovskites</topic><topic>polaron formation</topic><topic>Polarons</topic><topic>Populations</topic><topic>Single crystals</topic><topic>Thin films</topic><topic>transient absorption</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Brawand, Nicholas P.</creatorcontrib><creatorcontrib>Vörös, Márton</creatorcontrib><creatorcontrib>Dahlberg, Peter D.</creatorcontrib><creatorcontrib>Otto, John P.</creatorcontrib><creatorcontrib>Williams, Nicholas E.</creatorcontrib><creatorcontrib>Tiede, David M.</creatorcontrib><creatorcontrib>Galli, Giulia</creatorcontrib><creatorcontrib>Engel, Gregory S.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lili</au><au>Brawand, Nicholas P.</au><au>Vörös, Márton</au><au>Dahlberg, Peter D.</au><au>Otto, John P.</au><au>Williams, Nicholas E.</au><au>Tiede, David M.</au><au>Galli, Giulia</au><au>Engel, Gregory S.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitations Partition into Two Distinct Populations in Bulk Perovskites</atitle><jtitle>Advanced optical materials</jtitle><date>2018-03-05</date><risdate>2018</risdate><volume>6</volume><issue>5</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Organolead halide perovskites convert optical excitations to charge carriers with remarkable efficiency in optoelectronic devices. Previous research predominantly documents dynamics in perovskite thin films; however, extensive disorder in this platform may obscure the observed carrier dynamics. Here, carrier dynamics in perovskite single‐domain single crystals is examined by performing transient absorption spectroscopy in a transmissive geometry. Two distinct sets of carrier populations that coexist at the same radiation fluence, but display different decay dynamics, are observed: one dominated by second‐order recombination and the other by third‐order recombination. Based on ab initio simulations, this observation is found to be most consistent with the hypothesis that free carriers and localized carriers coexist due to polaron formation. The calculations suggest that polarons will form in both CH3NH3PbBr3 and CH3NH3PbI3 crystals, but that they are more pronounced in CH3NH3PbBr3. Single‐crystal CH3NH3PbBr3 could represent the key to understanding the impact of polarons on the transport properties of perovskite optoelectronic devices. Transient absorption spectroscopy on perovskite single‐domain single crystals reveals excitations partition into two distinct sets of carrier populations that coexist at the same radiation fluence, but decay differently. Ab initio calculations suggest that this observation is best explained by the coexistence of free carriers and localized carriers due to polaron formation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201700975</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6740-5243</orcidid><orcidid>https://orcid.org/0000000267405243</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2018-03, Vol.6 (5), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_osti_scitechconnect_1427475
source Wiley-Blackwell Journals
subjects bulk carrier dynamics
Charge efficiency
Current carriers
Dynamics
MATERIALS SCIENCE
Optics
Optoelectronic devices
Organolead compounds
organolead halide perovskites
Perovskites
polaron formation
Polarons
Populations
Single crystals
Thin films
transient absorption
title Excitations Partition into Two Distinct Populations in Bulk Perovskites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A12%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitations%20Partition%20into%20Two%20Distinct%20Populations%20in%20Bulk%20Perovskites&rft.jtitle=Advanced%20optical%20materials&rft.au=Wang,%20Lili&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-03-05&rft.volume=6&rft.issue=5&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201700975&rft_dat=%3Cproquest_osti_%3E2010299881%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010299881&rft_id=info:pmid/&rfr_iscdi=true