Effects of anisotropy on material hardening and burst in the bulge test

The hydraulic bulge test provides a means for testing sheet metal under a nearly equibiaxial stress state. Failure is delayed, allowing measurement of the material response at significantly larger strains than in the traditional uniaxial test. This study uses experiment and analysis to develop a met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2016-03, Vol.82 (C), p.70-84
Hauptverfasser: Chen, Kelin, Scales, Martin, Kyriakides, Stelios, Corona, Edmundo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue C
container_start_page 70
container_title International journal of solids and structures
container_volume 82
creator Chen, Kelin
Scales, Martin
Kyriakides, Stelios
Corona, Edmundo
description The hydraulic bulge test provides a means for testing sheet metal under a nearly equibiaxial stress state. Failure is delayed, allowing measurement of the material response at significantly larger strains than in the traditional uniaxial test. This study uses experiment and analysis to develop a methodology for incorporating anisotropy in the extraction of the material stress–strain response from a bulge test. A custom six-inch bulge testing facility is used to test aluminum alloy discs to failure. The curvature and strains at the apex of the bulge are monitored via stereo digital image correlation (DIC). Anisotropy is modeled via the 18-parameter non-quadratic yield function of Barlat et al. (2005), which is calibrated through independent tests on specimens from the same sheet as the bulge test specimens. The extraction of the material response uses the measured deformation at the apex and a flow rule based on the calibrated yield function. An equibiaxial state of stress or strain at the apex is not assumed. The extracted material response and the anisotropic yield function are subsequently used to simulate numerically the bulge test using solid elements. The results illustrate the effect of anisotropy on the extracted material stress–strain response and on the onset of localization that precedes failure.
doi_str_mv 10.1016/j.ijsolstr.2015.12.012
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1426358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768315005041</els_id><sourcerecordid>1809629688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-357bf65a7d0b80cbcb7c232a37f0bd83151ccb26100075bf92b5dd44014b241c3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD7-ggRXblrvTdu03SmDLxDc6Dokaepk6CRjkhHm35syunZ1ufCdwzmHkCuEEgH57bq06-inmELJAJsSWQnIjsgCu7YvGNb8mCwAGBQt76pTchbjGgDqqocFeXoYR6NTpH6k0tnoU_DbPfWObmQywcqJrmQYjLPuMwMDVbsQE7WOppXJz_RpaDIxXZCTUU7RXP7ec_Lx-PC-fC5e355elvevha47noqqadXIG9kOoDrQSqtWs4rJqh1BDV2FDWqtGMccsG3U2DPVDENdA9aK1airc3J98PUxWRG1TUavtHculxBYM141XYZuDtA2-K9dTic2NmozTdIZv4sCO-g563k3o_yA6uBjDGYU22A3MuwFgpjnFWvxN6-Y5xXIRJ43C-8OQpPbflsT5jDGaTPYMGcZvP3P4gduCoaU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1809629688</pqid></control><display><type>article</type><title>Effects of anisotropy on material hardening and burst in the bulge test</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Kelin ; Scales, Martin ; Kyriakides, Stelios ; Corona, Edmundo</creator><creatorcontrib>Chen, Kelin ; Scales, Martin ; Kyriakides, Stelios ; Corona, Edmundo</creatorcontrib><description>The hydraulic bulge test provides a means for testing sheet metal under a nearly equibiaxial stress state. Failure is delayed, allowing measurement of the material response at significantly larger strains than in the traditional uniaxial test. This study uses experiment and analysis to develop a methodology for incorporating anisotropy in the extraction of the material stress–strain response from a bulge test. A custom six-inch bulge testing facility is used to test aluminum alloy discs to failure. The curvature and strains at the apex of the bulge are monitored via stereo digital image correlation (DIC). Anisotropy is modeled via the 18-parameter non-quadratic yield function of Barlat et al. (2005), which is calibrated through independent tests on specimens from the same sheet as the bulge test specimens. The extraction of the material response uses the measured deformation at the apex and a flow rule based on the calibrated yield function. An equibiaxial state of stress or strain at the apex is not assumed. The extracted material response and the anisotropic yield function are subsequently used to simulate numerically the bulge test using solid elements. The results illustrate the effect of anisotropy on the extracted material stress–strain response and on the onset of localization that precedes failure.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2015.12.012</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Anisotropy ; Apexes ; Burst ; Extraction ; Failure ; Hydraulic bulge test ; Material stress–strain ; Mathematical analysis ; Mathematical models ; Strain ; Stress-strain relationships</subject><ispartof>International journal of solids and structures, 2016-03, Vol.82 (C), p.70-84</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-357bf65a7d0b80cbcb7c232a37f0bd83151ccb26100075bf92b5dd44014b241c3</citedby><cites>FETCH-LOGICAL-c486t-357bf65a7d0b80cbcb7c232a37f0bd83151ccb26100075bf92b5dd44014b241c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768315005041$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1426358$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Kelin</creatorcontrib><creatorcontrib>Scales, Martin</creatorcontrib><creatorcontrib>Kyriakides, Stelios</creatorcontrib><creatorcontrib>Corona, Edmundo</creatorcontrib><title>Effects of anisotropy on material hardening and burst in the bulge test</title><title>International journal of solids and structures</title><description>The hydraulic bulge test provides a means for testing sheet metal under a nearly equibiaxial stress state. Failure is delayed, allowing measurement of the material response at significantly larger strains than in the traditional uniaxial test. This study uses experiment and analysis to develop a methodology for incorporating anisotropy in the extraction of the material stress–strain response from a bulge test. A custom six-inch bulge testing facility is used to test aluminum alloy discs to failure. The curvature and strains at the apex of the bulge are monitored via stereo digital image correlation (DIC). Anisotropy is modeled via the 18-parameter non-quadratic yield function of Barlat et al. (2005), which is calibrated through independent tests on specimens from the same sheet as the bulge test specimens. The extraction of the material response uses the measured deformation at the apex and a flow rule based on the calibrated yield function. An equibiaxial state of stress or strain at the apex is not assumed. The extracted material response and the anisotropic yield function are subsequently used to simulate numerically the bulge test using solid elements. The results illustrate the effect of anisotropy on the extracted material stress–strain response and on the onset of localization that precedes failure.</description><subject>Anisotropy</subject><subject>Apexes</subject><subject>Burst</subject><subject>Extraction</subject><subject>Failure</subject><subject>Hydraulic bulge test</subject><subject>Material stress–strain</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Strain</subject><subject>Stress-strain relationships</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD7-ggRXblrvTdu03SmDLxDc6Dokaepk6CRjkhHm35syunZ1ufCdwzmHkCuEEgH57bq06-inmELJAJsSWQnIjsgCu7YvGNb8mCwAGBQt76pTchbjGgDqqocFeXoYR6NTpH6k0tnoU_DbPfWObmQywcqJrmQYjLPuMwMDVbsQE7WOppXJz_RpaDIxXZCTUU7RXP7ec_Lx-PC-fC5e355elvevha47noqqadXIG9kOoDrQSqtWs4rJqh1BDV2FDWqtGMccsG3U2DPVDENdA9aK1airc3J98PUxWRG1TUavtHculxBYM141XYZuDtA2-K9dTic2NmozTdIZv4sCO-g563k3o_yA6uBjDGYU22A3MuwFgpjnFWvxN6-Y5xXIRJ43C-8OQpPbflsT5jDGaTPYMGcZvP3P4gduCoaU</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Chen, Kelin</creator><creator>Scales, Martin</creator><creator>Kyriakides, Stelios</creator><creator>Corona, Edmundo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>20160301</creationdate><title>Effects of anisotropy on material hardening and burst in the bulge test</title><author>Chen, Kelin ; Scales, Martin ; Kyriakides, Stelios ; Corona, Edmundo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-357bf65a7d0b80cbcb7c232a37f0bd83151ccb26100075bf92b5dd44014b241c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Apexes</topic><topic>Burst</topic><topic>Extraction</topic><topic>Failure</topic><topic>Hydraulic bulge test</topic><topic>Material stress–strain</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Strain</topic><topic>Stress-strain relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kelin</creatorcontrib><creatorcontrib>Scales, Martin</creatorcontrib><creatorcontrib>Kyriakides, Stelios</creatorcontrib><creatorcontrib>Corona, Edmundo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kelin</au><au>Scales, Martin</au><au>Kyriakides, Stelios</au><au>Corona, Edmundo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of anisotropy on material hardening and burst in the bulge test</atitle><jtitle>International journal of solids and structures</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>82</volume><issue>C</issue><spage>70</spage><epage>84</epage><pages>70-84</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>The hydraulic bulge test provides a means for testing sheet metal under a nearly equibiaxial stress state. Failure is delayed, allowing measurement of the material response at significantly larger strains than in the traditional uniaxial test. This study uses experiment and analysis to develop a methodology for incorporating anisotropy in the extraction of the material stress–strain response from a bulge test. A custom six-inch bulge testing facility is used to test aluminum alloy discs to failure. The curvature and strains at the apex of the bulge are monitored via stereo digital image correlation (DIC). Anisotropy is modeled via the 18-parameter non-quadratic yield function of Barlat et al. (2005), which is calibrated through independent tests on specimens from the same sheet as the bulge test specimens. The extraction of the material response uses the measured deformation at the apex and a flow rule based on the calibrated yield function. An equibiaxial state of stress or strain at the apex is not assumed. The extracted material response and the anisotropic yield function are subsequently used to simulate numerically the bulge test using solid elements. The results illustrate the effect of anisotropy on the extracted material stress–strain response and on the onset of localization that precedes failure.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2015.12.012</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2016-03, Vol.82 (C), p.70-84
issn 0020-7683
1879-2146
language eng
recordid cdi_osti_scitechconnect_1426358
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Anisotropy
Apexes
Burst
Extraction
Failure
Hydraulic bulge test
Material stress–strain
Mathematical analysis
Mathematical models
Strain
Stress-strain relationships
title Effects of anisotropy on material hardening and burst in the bulge test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20anisotropy%20on%20material%20hardening%20and%20burst%20in%20the%20bulge%20test&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Chen,%20Kelin&rft.date=2016-03-01&rft.volume=82&rft.issue=C&rft.spage=70&rft.epage=84&rft.pages=70-84&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2015.12.012&rft_dat=%3Cproquest_osti_%3E1809629688%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1809629688&rft_id=info:pmid/&rft_els_id=S0020768315005041&rfr_iscdi=true