Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly

DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-02, Vol.359 (6376), p.669-672
Hauptverfasser: Lin, Qing-Yuan, Mason, Jarad A, Li, Zhongyang, Zhou, Wenjie, O'Brien, Matthew N, Brown, Keith A, Jones, Matthew R, Butun, Serkan, Lee, Byeongdu, Dravid, Vinayak P, Aydin, Koray, Mirkin, Chad A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 672
container_issue 6376
container_start_page 669
container_title Science (American Association for the Advancement of Science)
container_volume 359
creator Lin, Qing-Yuan
Mason, Jarad A
Li, Zhongyang
Zhou, Wenjie
O'Brien, Matthew N
Brown, Keith A
Jones, Matthew R
Butun, Serkan
Lee, Byeongdu
Dravid, Vinayak P
Aydin, Koray
Mirkin, Chad A
description DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing "locked" nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.
doi_str_mv 10.1126/science.aaq0591
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1426187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989607752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-7d3fd7dbdd7ec8a4d6ef12b5bbc6c2aacc9e577ecfabc70e7c254895be40c2a3</originalsourceid><addsrcrecordid>eNpdkbtPwzAQhy0EouUxs6EIFpaAH3Ecj1CeEoKlu3HsCxglTrCTSv3vMWphYLJ033cn3_0QOiH4khBaXkXjwBu41PoLc0l20JxgyXNJMdtFc4xZmVdY8Bk6iPET48Qk20czKllRsbKYo7ebybXW-fcsTgOEVo-jMxCzJvRd5rx1K2cn3WZe-37QIcE20ZXT2QjdkHTITe8b58Fmty_XeQfWpaLNdIzQ1e36CO01uo1wvH0P0fL-brl4zJ9fH54W18-5Kbgcc2FZY4WtrRVgKl3YEhpCa17XpjRUa2MkcJFYo2sjMAhDeVFJXkOBE2eH6Gwzto-jU-ksI5iP9DMPZlSkoCWpRJIuNtIQ-q8J4qg6Fw20rfbQT1ERWckSC8FpUs__qZ_9FHzaIFlSioJWjCTramOZ0McYoFFDcJ0Oa0Ww-glIbQNS24BSx-l27lSnW_35v4mwbwoJkN4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999742831</pqid></control><display><type>article</type><title>Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Lin, Qing-Yuan ; Mason, Jarad A ; Li, Zhongyang ; Zhou, Wenjie ; O'Brien, Matthew N ; Brown, Keith A ; Jones, Matthew R ; Butun, Serkan ; Lee, Byeongdu ; Dravid, Vinayak P ; Aydin, Koray ; Mirkin, Chad A</creator><creatorcontrib>Lin, Qing-Yuan ; Mason, Jarad A ; Li, Zhongyang ; Zhou, Wenjie ; O'Brien, Matthew N ; Brown, Keith A ; Jones, Matthew R ; Butun, Serkan ; Lee, Byeongdu ; Dravid, Vinayak P ; Aydin, Koray ; Mirkin, Chad A ; Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing "locked" nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaq0591</identifier><identifier>PMID: 29348364</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Adenine ; Assembly ; Base pairs ; Broadband ; Confined spaces ; Deoxyribonucleic acid ; DNA ; Electromagnetic absorption ; Gold ; MATERIALS SCIENCE ; Nanoparticles ; NANOSCIENCE AND NANOTECHNOLOGY ; Nucleic acids ; Oligonucleotides ; Optical materials ; Optics ; Polarity ; Polymers ; Ribose ; Stability ; Stacks ; Strands ; Superlattices</subject><ispartof>Science (American Association for the Advancement of Science), 2018-02, Vol.359 (6376), p.669-672</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-7d3fd7dbdd7ec8a4d6ef12b5bbc6c2aacc9e577ecfabc70e7c254895be40c2a3</citedby><cites>FETCH-LOGICAL-c459t-7d3fd7dbdd7ec8a4d6ef12b5bbc6c2aacc9e577ecfabc70e7c254895be40c2a3</cites><orcidid>0000-0003-0592-5339 ; 0000-0002-1721-0464 ; 0000-0002-6007-3063 ; 0000-0002-7626-4032 ; 0000-0001-9306-9311 ; 0000-0001-6349-9185 ; 0000-0002-2379-2018 ; 0000-0002-6634-7627 ; 0000-0002-9289-291X ; 0000-0003-2514-8805 ; 0000-0002-3268-2216 ; 0000-0003-0328-7775 ; 0000000260073063 ; 0000000232682216 ; 0000000193069311 ; 0000000223792018 ; 0000000305925339 ; 0000000303287775 ; 0000000217210464 ; 0000000266347627 ; 0000000325148805 ; 000000029289291X ; 0000000163499185 ; 0000000276264032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2871,2872,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29348364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1426187$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Qing-Yuan</creatorcontrib><creatorcontrib>Mason, Jarad A</creatorcontrib><creatorcontrib>Li, Zhongyang</creatorcontrib><creatorcontrib>Zhou, Wenjie</creatorcontrib><creatorcontrib>O'Brien, Matthew N</creatorcontrib><creatorcontrib>Brown, Keith A</creatorcontrib><creatorcontrib>Jones, Matthew R</creatorcontrib><creatorcontrib>Butun, Serkan</creatorcontrib><creatorcontrib>Lee, Byeongdu</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><creatorcontrib>Aydin, Koray</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing "locked" nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.</description><subject>Adenine</subject><subject>Assembly</subject><subject>Base pairs</subject><subject>Broadband</subject><subject>Confined spaces</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electromagnetic absorption</subject><subject>Gold</subject><subject>MATERIALS SCIENCE</subject><subject>Nanoparticles</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nucleic acids</subject><subject>Oligonucleotides</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Polarity</subject><subject>Polymers</subject><subject>Ribose</subject><subject>Stability</subject><subject>Stacks</subject><subject>Strands</subject><subject>Superlattices</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkbtPwzAQhy0EouUxs6EIFpaAH3Ecj1CeEoKlu3HsCxglTrCTSv3vMWphYLJ033cn3_0QOiH4khBaXkXjwBu41PoLc0l20JxgyXNJMdtFc4xZmVdY8Bk6iPET48Qk20czKllRsbKYo7ebybXW-fcsTgOEVo-jMxCzJvRd5rx1K2cn3WZe-37QIcE20ZXT2QjdkHTITe8b58Fmty_XeQfWpaLNdIzQ1e36CO01uo1wvH0P0fL-brl4zJ9fH54W18-5Kbgcc2FZY4WtrRVgKl3YEhpCa17XpjRUa2MkcJFYo2sjMAhDeVFJXkOBE2eH6Gwzto-jU-ksI5iP9DMPZlSkoCWpRJIuNtIQ-q8J4qg6Fw20rfbQT1ERWckSC8FpUs__qZ_9FHzaIFlSioJWjCTramOZ0McYoFFDcJ0Oa0Ww-glIbQNS24BSx-l27lSnW_35v4mwbwoJkN4</recordid><startdate>20180209</startdate><enddate>20180209</enddate><creator>Lin, Qing-Yuan</creator><creator>Mason, Jarad A</creator><creator>Li, Zhongyang</creator><creator>Zhou, Wenjie</creator><creator>O'Brien, Matthew N</creator><creator>Brown, Keith A</creator><creator>Jones, Matthew R</creator><creator>Butun, Serkan</creator><creator>Lee, Byeongdu</creator><creator>Dravid, Vinayak P</creator><creator>Aydin, Koray</creator><creator>Mirkin, Chad A</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0592-5339</orcidid><orcidid>https://orcid.org/0000-0002-1721-0464</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/0000-0002-7626-4032</orcidid><orcidid>https://orcid.org/0000-0001-9306-9311</orcidid><orcidid>https://orcid.org/0000-0001-6349-9185</orcidid><orcidid>https://orcid.org/0000-0002-2379-2018</orcidid><orcidid>https://orcid.org/0000-0002-6634-7627</orcidid><orcidid>https://orcid.org/0000-0002-9289-291X</orcidid><orcidid>https://orcid.org/0000-0003-2514-8805</orcidid><orcidid>https://orcid.org/0000-0002-3268-2216</orcidid><orcidid>https://orcid.org/0000-0003-0328-7775</orcidid><orcidid>https://orcid.org/0000000260073063</orcidid><orcidid>https://orcid.org/0000000232682216</orcidid><orcidid>https://orcid.org/0000000193069311</orcidid><orcidid>https://orcid.org/0000000223792018</orcidid><orcidid>https://orcid.org/0000000305925339</orcidid><orcidid>https://orcid.org/0000000303287775</orcidid><orcidid>https://orcid.org/0000000217210464</orcidid><orcidid>https://orcid.org/0000000266347627</orcidid><orcidid>https://orcid.org/0000000325148805</orcidid><orcidid>https://orcid.org/000000029289291X</orcidid><orcidid>https://orcid.org/0000000163499185</orcidid><orcidid>https://orcid.org/0000000276264032</orcidid></search><sort><creationdate>20180209</creationdate><title>Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly</title><author>Lin, Qing-Yuan ; Mason, Jarad A ; Li, Zhongyang ; Zhou, Wenjie ; O'Brien, Matthew N ; Brown, Keith A ; Jones, Matthew R ; Butun, Serkan ; Lee, Byeongdu ; Dravid, Vinayak P ; Aydin, Koray ; Mirkin, Chad A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-7d3fd7dbdd7ec8a4d6ef12b5bbc6c2aacc9e577ecfabc70e7c254895be40c2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenine</topic><topic>Assembly</topic><topic>Base pairs</topic><topic>Broadband</topic><topic>Confined spaces</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electromagnetic absorption</topic><topic>Gold</topic><topic>MATERIALS SCIENCE</topic><topic>Nanoparticles</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nucleic acids</topic><topic>Oligonucleotides</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Polarity</topic><topic>Polymers</topic><topic>Ribose</topic><topic>Stability</topic><topic>Stacks</topic><topic>Strands</topic><topic>Superlattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Qing-Yuan</creatorcontrib><creatorcontrib>Mason, Jarad A</creatorcontrib><creatorcontrib>Li, Zhongyang</creatorcontrib><creatorcontrib>Zhou, Wenjie</creatorcontrib><creatorcontrib>O'Brien, Matthew N</creatorcontrib><creatorcontrib>Brown, Keith A</creatorcontrib><creatorcontrib>Jones, Matthew R</creatorcontrib><creatorcontrib>Butun, Serkan</creatorcontrib><creatorcontrib>Lee, Byeongdu</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><creatorcontrib>Aydin, Koray</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Qing-Yuan</au><au>Mason, Jarad A</au><au>Li, Zhongyang</au><au>Zhou, Wenjie</au><au>O'Brien, Matthew N</au><au>Brown, Keith A</au><au>Jones, Matthew R</au><au>Butun, Serkan</au><au>Lee, Byeongdu</au><au>Dravid, Vinayak P</au><au>Aydin, Koray</au><au>Mirkin, Chad A</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-02-09</date><risdate>2018</risdate><volume>359</volume><issue>6376</issue><spage>669</spage><epage>672</epage><pages>669-672</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing "locked" nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>29348364</pmid><doi>10.1126/science.aaq0591</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0592-5339</orcidid><orcidid>https://orcid.org/0000-0002-1721-0464</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/0000-0002-7626-4032</orcidid><orcidid>https://orcid.org/0000-0001-9306-9311</orcidid><orcidid>https://orcid.org/0000-0001-6349-9185</orcidid><orcidid>https://orcid.org/0000-0002-2379-2018</orcidid><orcidid>https://orcid.org/0000-0002-6634-7627</orcidid><orcidid>https://orcid.org/0000-0002-9289-291X</orcidid><orcidid>https://orcid.org/0000-0003-2514-8805</orcidid><orcidid>https://orcid.org/0000-0002-3268-2216</orcidid><orcidid>https://orcid.org/0000-0003-0328-7775</orcidid><orcidid>https://orcid.org/0000000260073063</orcidid><orcidid>https://orcid.org/0000000232682216</orcidid><orcidid>https://orcid.org/0000000193069311</orcidid><orcidid>https://orcid.org/0000000223792018</orcidid><orcidid>https://orcid.org/0000000305925339</orcidid><orcidid>https://orcid.org/0000000303287775</orcidid><orcidid>https://orcid.org/0000000217210464</orcidid><orcidid>https://orcid.org/0000000266347627</orcidid><orcidid>https://orcid.org/0000000325148805</orcidid><orcidid>https://orcid.org/000000029289291X</orcidid><orcidid>https://orcid.org/0000000163499185</orcidid><orcidid>https://orcid.org/0000000276264032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-02, Vol.359 (6376), p.669-672
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1426187
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Adenine
Assembly
Base pairs
Broadband
Confined spaces
Deoxyribonucleic acid
DNA
Electromagnetic absorption
Gold
MATERIALS SCIENCE
Nanoparticles
NANOSCIENCE AND NANOTECHNOLOGY
Nucleic acids
Oligonucleotides
Optical materials
Optics
Polarity
Polymers
Ribose
Stability
Stacks
Strands
Superlattices
title Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20superlattices%20from%20individual%20nanoparticles%20via%20template-confined%20DNA-mediated%20assembly&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lin,%20Qing-Yuan&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Bio-Inspired%20Energy%20Science%20(CBES)&rft.date=2018-02-09&rft.volume=359&rft.issue=6376&rft.spage=669&rft.epage=672&rft.pages=669-672&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaq0591&rft_dat=%3Cproquest_osti_%3E1989607752%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999742831&rft_id=info:pmid/29348364&rfr_iscdi=true