Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly
DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is co...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2018-02, Vol.359 (6376), p.669-672 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 672 |
---|---|
container_issue | 6376 |
container_start_page | 669 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 359 |
creator | Lin, Qing-Yuan Mason, Jarad A Li, Zhongyang Zhou, Wenjie O'Brien, Matthew N Brown, Keith A Jones, Matthew R Butun, Serkan Lee, Byeongdu Dravid, Vinayak P Aydin, Koray Mirkin, Chad A |
description | DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing "locked" nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption. |
doi_str_mv | 10.1126/science.aaq0591 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1426187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989607752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-7d3fd7dbdd7ec8a4d6ef12b5bbc6c2aacc9e577ecfabc70e7c254895be40c2a3</originalsourceid><addsrcrecordid>eNpdkbtPwzAQhy0EouUxs6EIFpaAH3Ecj1CeEoKlu3HsCxglTrCTSv3vMWphYLJ033cn3_0QOiH4khBaXkXjwBu41PoLc0l20JxgyXNJMdtFc4xZmVdY8Bk6iPET48Qk20czKllRsbKYo7ebybXW-fcsTgOEVo-jMxCzJvRd5rx1K2cn3WZe-37QIcE20ZXT2QjdkHTITe8b58Fmty_XeQfWpaLNdIzQ1e36CO01uo1wvH0P0fL-brl4zJ9fH54W18-5Kbgcc2FZY4WtrRVgKl3YEhpCa17XpjRUa2MkcJFYo2sjMAhDeVFJXkOBE2eH6Gwzto-jU-ksI5iP9DMPZlSkoCWpRJIuNtIQ-q8J4qg6Fw20rfbQT1ERWckSC8FpUs__qZ_9FHzaIFlSioJWjCTramOZ0McYoFFDcJ0Oa0Ww-glIbQNS24BSx-l27lSnW_35v4mwbwoJkN4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999742831</pqid></control><display><type>article</type><title>Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Lin, Qing-Yuan ; Mason, Jarad A ; Li, Zhongyang ; Zhou, Wenjie ; O'Brien, Matthew N ; Brown, Keith A ; Jones, Matthew R ; Butun, Serkan ; Lee, Byeongdu ; Dravid, Vinayak P ; Aydin, Koray ; Mirkin, Chad A</creator><creatorcontrib>Lin, Qing-Yuan ; Mason, Jarad A ; Li, Zhongyang ; Zhou, Wenjie ; O'Brien, Matthew N ; Brown, Keith A ; Jones, Matthew R ; Butun, Serkan ; Lee, Byeongdu ; Dravid, Vinayak P ; Aydin, Koray ; Mirkin, Chad A ; Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing "locked" nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaq0591</identifier><identifier>PMID: 29348364</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Adenine ; Assembly ; Base pairs ; Broadband ; Confined spaces ; Deoxyribonucleic acid ; DNA ; Electromagnetic absorption ; Gold ; MATERIALS SCIENCE ; Nanoparticles ; NANOSCIENCE AND NANOTECHNOLOGY ; Nucleic acids ; Oligonucleotides ; Optical materials ; Optics ; Polarity ; Polymers ; Ribose ; Stability ; Stacks ; Strands ; Superlattices</subject><ispartof>Science (American Association for the Advancement of Science), 2018-02, Vol.359 (6376), p.669-672</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-7d3fd7dbdd7ec8a4d6ef12b5bbc6c2aacc9e577ecfabc70e7c254895be40c2a3</citedby><cites>FETCH-LOGICAL-c459t-7d3fd7dbdd7ec8a4d6ef12b5bbc6c2aacc9e577ecfabc70e7c254895be40c2a3</cites><orcidid>0000-0003-0592-5339 ; 0000-0002-1721-0464 ; 0000-0002-6007-3063 ; 0000-0002-7626-4032 ; 0000-0001-9306-9311 ; 0000-0001-6349-9185 ; 0000-0002-2379-2018 ; 0000-0002-6634-7627 ; 0000-0002-9289-291X ; 0000-0003-2514-8805 ; 0000-0002-3268-2216 ; 0000-0003-0328-7775 ; 0000000260073063 ; 0000000232682216 ; 0000000193069311 ; 0000000223792018 ; 0000000305925339 ; 0000000303287775 ; 0000000217210464 ; 0000000266347627 ; 0000000325148805 ; 000000029289291X ; 0000000163499185 ; 0000000276264032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2871,2872,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29348364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1426187$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Qing-Yuan</creatorcontrib><creatorcontrib>Mason, Jarad A</creatorcontrib><creatorcontrib>Li, Zhongyang</creatorcontrib><creatorcontrib>Zhou, Wenjie</creatorcontrib><creatorcontrib>O'Brien, Matthew N</creatorcontrib><creatorcontrib>Brown, Keith A</creatorcontrib><creatorcontrib>Jones, Matthew R</creatorcontrib><creatorcontrib>Butun, Serkan</creatorcontrib><creatorcontrib>Lee, Byeongdu</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><creatorcontrib>Aydin, Koray</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing "locked" nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.</description><subject>Adenine</subject><subject>Assembly</subject><subject>Base pairs</subject><subject>Broadband</subject><subject>Confined spaces</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electromagnetic absorption</subject><subject>Gold</subject><subject>MATERIALS SCIENCE</subject><subject>Nanoparticles</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nucleic acids</subject><subject>Oligonucleotides</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Polarity</subject><subject>Polymers</subject><subject>Ribose</subject><subject>Stability</subject><subject>Stacks</subject><subject>Strands</subject><subject>Superlattices</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkbtPwzAQhy0EouUxs6EIFpaAH3Ecj1CeEoKlu3HsCxglTrCTSv3vMWphYLJ033cn3_0QOiH4khBaXkXjwBu41PoLc0l20JxgyXNJMdtFc4xZmVdY8Bk6iPET48Qk20czKllRsbKYo7ebybXW-fcsTgOEVo-jMxCzJvRd5rx1K2cn3WZe-37QIcE20ZXT2QjdkHTITe8b58Fmty_XeQfWpaLNdIzQ1e36CO01uo1wvH0P0fL-brl4zJ9fH54W18-5Kbgcc2FZY4WtrRVgKl3YEhpCa17XpjRUa2MkcJFYo2sjMAhDeVFJXkOBE2eH6Gwzto-jU-ksI5iP9DMPZlSkoCWpRJIuNtIQ-q8J4qg6Fw20rfbQT1ERWckSC8FpUs__qZ_9FHzaIFlSioJWjCTramOZ0McYoFFDcJ0Oa0Ww-glIbQNS24BSx-l27lSnW_35v4mwbwoJkN4</recordid><startdate>20180209</startdate><enddate>20180209</enddate><creator>Lin, Qing-Yuan</creator><creator>Mason, Jarad A</creator><creator>Li, Zhongyang</creator><creator>Zhou, Wenjie</creator><creator>O'Brien, Matthew N</creator><creator>Brown, Keith A</creator><creator>Jones, Matthew R</creator><creator>Butun, Serkan</creator><creator>Lee, Byeongdu</creator><creator>Dravid, Vinayak P</creator><creator>Aydin, Koray</creator><creator>Mirkin, Chad A</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0592-5339</orcidid><orcidid>https://orcid.org/0000-0002-1721-0464</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/0000-0002-7626-4032</orcidid><orcidid>https://orcid.org/0000-0001-9306-9311</orcidid><orcidid>https://orcid.org/0000-0001-6349-9185</orcidid><orcidid>https://orcid.org/0000-0002-2379-2018</orcidid><orcidid>https://orcid.org/0000-0002-6634-7627</orcidid><orcidid>https://orcid.org/0000-0002-9289-291X</orcidid><orcidid>https://orcid.org/0000-0003-2514-8805</orcidid><orcidid>https://orcid.org/0000-0002-3268-2216</orcidid><orcidid>https://orcid.org/0000-0003-0328-7775</orcidid><orcidid>https://orcid.org/0000000260073063</orcidid><orcidid>https://orcid.org/0000000232682216</orcidid><orcidid>https://orcid.org/0000000193069311</orcidid><orcidid>https://orcid.org/0000000223792018</orcidid><orcidid>https://orcid.org/0000000305925339</orcidid><orcidid>https://orcid.org/0000000303287775</orcidid><orcidid>https://orcid.org/0000000217210464</orcidid><orcidid>https://orcid.org/0000000266347627</orcidid><orcidid>https://orcid.org/0000000325148805</orcidid><orcidid>https://orcid.org/000000029289291X</orcidid><orcidid>https://orcid.org/0000000163499185</orcidid><orcidid>https://orcid.org/0000000276264032</orcidid></search><sort><creationdate>20180209</creationdate><title>Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly</title><author>Lin, Qing-Yuan ; Mason, Jarad A ; Li, Zhongyang ; Zhou, Wenjie ; O'Brien, Matthew N ; Brown, Keith A ; Jones, Matthew R ; Butun, Serkan ; Lee, Byeongdu ; Dravid, Vinayak P ; Aydin, Koray ; Mirkin, Chad A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-7d3fd7dbdd7ec8a4d6ef12b5bbc6c2aacc9e577ecfabc70e7c254895be40c2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenine</topic><topic>Assembly</topic><topic>Base pairs</topic><topic>Broadband</topic><topic>Confined spaces</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electromagnetic absorption</topic><topic>Gold</topic><topic>MATERIALS SCIENCE</topic><topic>Nanoparticles</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nucleic acids</topic><topic>Oligonucleotides</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Polarity</topic><topic>Polymers</topic><topic>Ribose</topic><topic>Stability</topic><topic>Stacks</topic><topic>Strands</topic><topic>Superlattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Qing-Yuan</creatorcontrib><creatorcontrib>Mason, Jarad A</creatorcontrib><creatorcontrib>Li, Zhongyang</creatorcontrib><creatorcontrib>Zhou, Wenjie</creatorcontrib><creatorcontrib>O'Brien, Matthew N</creatorcontrib><creatorcontrib>Brown, Keith A</creatorcontrib><creatorcontrib>Jones, Matthew R</creatorcontrib><creatorcontrib>Butun, Serkan</creatorcontrib><creatorcontrib>Lee, Byeongdu</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><creatorcontrib>Aydin, Koray</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Qing-Yuan</au><au>Mason, Jarad A</au><au>Li, Zhongyang</au><au>Zhou, Wenjie</au><au>O'Brien, Matthew N</au><au>Brown, Keith A</au><au>Jones, Matthew R</au><au>Butun, Serkan</au><au>Lee, Byeongdu</au><au>Dravid, Vinayak P</au><au>Aydin, Koray</au><au>Mirkin, Chad A</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-02-09</date><risdate>2018</risdate><volume>359</volume><issue>6376</issue><spage>669</spage><epage>672</epage><pages>669-672</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing "locked" nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>29348364</pmid><doi>10.1126/science.aaq0591</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0592-5339</orcidid><orcidid>https://orcid.org/0000-0002-1721-0464</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/0000-0002-7626-4032</orcidid><orcidid>https://orcid.org/0000-0001-9306-9311</orcidid><orcidid>https://orcid.org/0000-0001-6349-9185</orcidid><orcidid>https://orcid.org/0000-0002-2379-2018</orcidid><orcidid>https://orcid.org/0000-0002-6634-7627</orcidid><orcidid>https://orcid.org/0000-0002-9289-291X</orcidid><orcidid>https://orcid.org/0000-0003-2514-8805</orcidid><orcidid>https://orcid.org/0000-0002-3268-2216</orcidid><orcidid>https://orcid.org/0000-0003-0328-7775</orcidid><orcidid>https://orcid.org/0000000260073063</orcidid><orcidid>https://orcid.org/0000000232682216</orcidid><orcidid>https://orcid.org/0000000193069311</orcidid><orcidid>https://orcid.org/0000000223792018</orcidid><orcidid>https://orcid.org/0000000305925339</orcidid><orcidid>https://orcid.org/0000000303287775</orcidid><orcidid>https://orcid.org/0000000217210464</orcidid><orcidid>https://orcid.org/0000000266347627</orcidid><orcidid>https://orcid.org/0000000325148805</orcidid><orcidid>https://orcid.org/000000029289291X</orcidid><orcidid>https://orcid.org/0000000163499185</orcidid><orcidid>https://orcid.org/0000000276264032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2018-02, Vol.359 (6376), p.669-672 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1426187 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Adenine Assembly Base pairs Broadband Confined spaces Deoxyribonucleic acid DNA Electromagnetic absorption Gold MATERIALS SCIENCE Nanoparticles NANOSCIENCE AND NANOTECHNOLOGY Nucleic acids Oligonucleotides Optical materials Optics Polarity Polymers Ribose Stability Stacks Strands Superlattices |
title | Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20superlattices%20from%20individual%20nanoparticles%20via%20template-confined%20DNA-mediated%20assembly&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lin,%20Qing-Yuan&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Bio-Inspired%20Energy%20Science%20(CBES)&rft.date=2018-02-09&rft.volume=359&rft.issue=6376&rft.spage=669&rft.epage=672&rft.pages=669-672&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaq0591&rft_dat=%3Cproquest_osti_%3E1989607752%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999742831&rft_id=info:pmid/29348364&rfr_iscdi=true |