Fuel Cell Performance Implications of Membrane Electrode Assembly Fabrication with Platinum-Nickel Nanowire Catalysts

Platinum-nickel nanowire (PtNiNW) catalysts have shown exceptionally high oxygen reduction mass activity in rotating disk electrode measurements. However, the ability to successfully incorporate PtNiNWs into high performance membrane electrode assemblies (MEAs) has been challenging due to their size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2018-01, Vol.165 (3), p.F238-F245
Hauptverfasser: Mauger, Scott A., Neyerlin, K. C., Alia, Shaun M., Ngo, Chilan, Babu, Siddharth Komini, Hurst, Katherine E., Pylypenko, Svitlana, Litster, Shawn, Pivovar, Bryan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page F245
container_issue 3
container_start_page F238
container_title Journal of the Electrochemical Society
container_volume 165
creator Mauger, Scott A.
Neyerlin, K. C.
Alia, Shaun M.
Ngo, Chilan
Babu, Siddharth Komini
Hurst, Katherine E.
Pylypenko, Svitlana
Litster, Shawn
Pivovar, Bryan S.
description Platinum-nickel nanowire (PtNiNW) catalysts have shown exceptionally high oxygen reduction mass activity in rotating disk electrode measurements. However, the ability to successfully incorporate PtNiNWs into high performance membrane electrode assemblies (MEAs) has been challenging due to their size, shape, density, dispersion characteristics, and corrosion-susceptible nickel core. We have investigated the impact of specific processing steps and electrode composition on observed fuel cell performance and electrochemical properties in order to optimize performance. We have found that nickel ion contamination is a major concern for PtNiNWs that can be addressed through ion exchange in fabricated/tested MEAs or by acid leaching of catalyst materials prior to MEA incorporation, with the latter being the more successful method. Additionally, decreased ionomer incorporation has led to the highest performance demonstrating 238 mA/mgPt (0.9 V IR-free) for PtNiNWs (pre-leached to 80 wt% Pt) with 9 wt% ionomer incorporation.
doi_str_mv 10.1149/2.1061803jes
format Article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1425998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1061803JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-9434bbecc83932ebf7ef9c586ad45d91bade3268940357afe2fc4053901673013</originalsourceid><addsrcrecordid>eNptkE1LAzEURYMoWKs7f0Bw5cKpySTzkWUZWi3U2oWuh0zmDU3NTEqSofTfG6ngxtXjPg4XzkXonpIZpVw8pzNKcloStgd_gSZU8CwpKKWXaEIIZQnPM3qNbrzfx0hLXkzQuBzB4AqMwVtwnXW9HBTgVX8wWsmg7eCx7fAb9I2TA-CFARWcbQHPvY9Pc8JL2bhfFh912OGtiWEY-2Sj1Vds38jBHrUDXMkgzckHf4uuOmk83P3eKfpcLj6q12T9_rKq5utEMcZCIjjjTQNKlUywFJqugE6orMxly7NW0Ea2wNK8FJywrJAdpJ3iJGOC0Lxg0XiKHs691gdde6UDqJ2ywxAlasrTTIgyQk9nSDnrvYOuPjjdS3eqKal_dq3T-m_XiD-ecW0P9d6ObogG_6Pfjux5Uw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuel Cell Performance Implications of Membrane Electrode Assembly Fabrication with Platinum-Nickel Nanowire Catalysts</title><source>Institute of Physics Journals</source><creator>Mauger, Scott A. ; Neyerlin, K. C. ; Alia, Shaun M. ; Ngo, Chilan ; Babu, Siddharth Komini ; Hurst, Katherine E. ; Pylypenko, Svitlana ; Litster, Shawn ; Pivovar, Bryan S.</creator><creatorcontrib>Mauger, Scott A. ; Neyerlin, K. C. ; Alia, Shaun M. ; Ngo, Chilan ; Babu, Siddharth Komini ; Hurst, Katherine E. ; Pylypenko, Svitlana ; Litster, Shawn ; Pivovar, Bryan S. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Platinum-nickel nanowire (PtNiNW) catalysts have shown exceptionally high oxygen reduction mass activity in rotating disk electrode measurements. However, the ability to successfully incorporate PtNiNWs into high performance membrane electrode assemblies (MEAs) has been challenging due to their size, shape, density, dispersion characteristics, and corrosion-susceptible nickel core. We have investigated the impact of specific processing steps and electrode composition on observed fuel cell performance and electrochemical properties in order to optimize performance. We have found that nickel ion contamination is a major concern for PtNiNWs that can be addressed through ion exchange in fabricated/tested MEAs or by acid leaching of catalyst materials prior to MEA incorporation, with the latter being the more successful method. Additionally, decreased ionomer incorporation has led to the highest performance demonstrating 238 mA/mgPt (0.9 V IR-free) for PtNiNWs (pre-leached to 80 wt% Pt) with 9 wt% ionomer incorporation.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.1061803jes</identifier><language>eng</language><publisher>United States: The Electrochemical Society</publisher><subject>fuel cells ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE ; membrane electrode assembly ; unsupported electrocatalyst</subject><ispartof>Journal of the Electrochemical Society, 2018-01, Vol.165 (3), p.F238-F245</ispartof><rights>The Author(s) 2018. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-9434bbecc83932ebf7ef9c586ad45d91bade3268940357afe2fc4053901673013</citedby><cites>FETCH-LOGICAL-c333t-9434bbecc83932ebf7ef9c586ad45d91bade3268940357afe2fc4053901673013</cites><orcidid>0000-0001-7982-734X ; 0000-0002-7647-9383 ; 0000-0003-2787-5029 ; 0000-0001-5724-8486 ; 0000000276479383 ; 000000017982734X ; 0000000327875029 ; 0000000157248486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.1061803jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1425998$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mauger, Scott A.</creatorcontrib><creatorcontrib>Neyerlin, K. C.</creatorcontrib><creatorcontrib>Alia, Shaun M.</creatorcontrib><creatorcontrib>Ngo, Chilan</creatorcontrib><creatorcontrib>Babu, Siddharth Komini</creatorcontrib><creatorcontrib>Hurst, Katherine E.</creatorcontrib><creatorcontrib>Pylypenko, Svitlana</creatorcontrib><creatorcontrib>Litster, Shawn</creatorcontrib><creatorcontrib>Pivovar, Bryan S.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Fuel Cell Performance Implications of Membrane Electrode Assembly Fabrication with Platinum-Nickel Nanowire Catalysts</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Platinum-nickel nanowire (PtNiNW) catalysts have shown exceptionally high oxygen reduction mass activity in rotating disk electrode measurements. However, the ability to successfully incorporate PtNiNWs into high performance membrane electrode assemblies (MEAs) has been challenging due to their size, shape, density, dispersion characteristics, and corrosion-susceptible nickel core. We have investigated the impact of specific processing steps and electrode composition on observed fuel cell performance and electrochemical properties in order to optimize performance. We have found that nickel ion contamination is a major concern for PtNiNWs that can be addressed through ion exchange in fabricated/tested MEAs or by acid leaching of catalyst materials prior to MEA incorporation, with the latter being the more successful method. Additionally, decreased ionomer incorporation has led to the highest performance demonstrating 238 mA/mgPt (0.9 V IR-free) for PtNiNWs (pre-leached to 80 wt% Pt) with 9 wt% ionomer incorporation.</description><subject>fuel cells</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><subject>membrane electrode assembly</subject><subject>unsupported electrocatalyst</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkE1LAzEURYMoWKs7f0Bw5cKpySTzkWUZWi3U2oWuh0zmDU3NTEqSofTfG6ngxtXjPg4XzkXonpIZpVw8pzNKcloStgd_gSZU8CwpKKWXaEIIZQnPM3qNbrzfx0hLXkzQuBzB4AqMwVtwnXW9HBTgVX8wWsmg7eCx7fAb9I2TA-CFARWcbQHPvY9Pc8JL2bhfFh912OGtiWEY-2Sj1Vds38jBHrUDXMkgzckHf4uuOmk83P3eKfpcLj6q12T9_rKq5utEMcZCIjjjTQNKlUywFJqugE6orMxly7NW0Ea2wNK8FJywrJAdpJ3iJGOC0Lxg0XiKHs691gdde6UDqJ2ywxAlasrTTIgyQk9nSDnrvYOuPjjdS3eqKal_dq3T-m_XiD-ecW0P9d6ObogG_6Pfjux5Uw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Mauger, Scott A.</creator><creator>Neyerlin, K. C.</creator><creator>Alia, Shaun M.</creator><creator>Ngo, Chilan</creator><creator>Babu, Siddharth Komini</creator><creator>Hurst, Katherine E.</creator><creator>Pylypenko, Svitlana</creator><creator>Litster, Shawn</creator><creator>Pivovar, Bryan S.</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7982-734X</orcidid><orcidid>https://orcid.org/0000-0002-7647-9383</orcidid><orcidid>https://orcid.org/0000-0003-2787-5029</orcidid><orcidid>https://orcid.org/0000-0001-5724-8486</orcidid><orcidid>https://orcid.org/0000000276479383</orcidid><orcidid>https://orcid.org/000000017982734X</orcidid><orcidid>https://orcid.org/0000000327875029</orcidid><orcidid>https://orcid.org/0000000157248486</orcidid></search><sort><creationdate>20180101</creationdate><title>Fuel Cell Performance Implications of Membrane Electrode Assembly Fabrication with Platinum-Nickel Nanowire Catalysts</title><author>Mauger, Scott A. ; Neyerlin, K. C. ; Alia, Shaun M. ; Ngo, Chilan ; Babu, Siddharth Komini ; Hurst, Katherine E. ; Pylypenko, Svitlana ; Litster, Shawn ; Pivovar, Bryan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-9434bbecc83932ebf7ef9c586ad45d91bade3268940357afe2fc4053901673013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>fuel cells</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><topic>membrane electrode assembly</topic><topic>unsupported electrocatalyst</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mauger, Scott A.</creatorcontrib><creatorcontrib>Neyerlin, K. C.</creatorcontrib><creatorcontrib>Alia, Shaun M.</creatorcontrib><creatorcontrib>Ngo, Chilan</creatorcontrib><creatorcontrib>Babu, Siddharth Komini</creatorcontrib><creatorcontrib>Hurst, Katherine E.</creatorcontrib><creatorcontrib>Pylypenko, Svitlana</creatorcontrib><creatorcontrib>Litster, Shawn</creatorcontrib><creatorcontrib>Pivovar, Bryan S.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mauger, Scott A.</au><au>Neyerlin, K. C.</au><au>Alia, Shaun M.</au><au>Ngo, Chilan</au><au>Babu, Siddharth Komini</au><au>Hurst, Katherine E.</au><au>Pylypenko, Svitlana</au><au>Litster, Shawn</au><au>Pivovar, Bryan S.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel Cell Performance Implications of Membrane Electrode Assembly Fabrication with Platinum-Nickel Nanowire Catalysts</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>165</volume><issue>3</issue><spage>F238</spage><epage>F245</epage><pages>F238-F245</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>Platinum-nickel nanowire (PtNiNW) catalysts have shown exceptionally high oxygen reduction mass activity in rotating disk electrode measurements. However, the ability to successfully incorporate PtNiNWs into high performance membrane electrode assemblies (MEAs) has been challenging due to their size, shape, density, dispersion characteristics, and corrosion-susceptible nickel core. We have investigated the impact of specific processing steps and electrode composition on observed fuel cell performance and electrochemical properties in order to optimize performance. We have found that nickel ion contamination is a major concern for PtNiNWs that can be addressed through ion exchange in fabricated/tested MEAs or by acid leaching of catalyst materials prior to MEA incorporation, with the latter being the more successful method. Additionally, decreased ionomer incorporation has led to the highest performance demonstrating 238 mA/mgPt (0.9 V IR-free) for PtNiNWs (pre-leached to 80 wt% Pt) with 9 wt% ionomer incorporation.</abstract><cop>United States</cop><pub>The Electrochemical Society</pub><doi>10.1149/2.1061803jes</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7982-734X</orcidid><orcidid>https://orcid.org/0000-0002-7647-9383</orcidid><orcidid>https://orcid.org/0000-0003-2787-5029</orcidid><orcidid>https://orcid.org/0000-0001-5724-8486</orcidid><orcidid>https://orcid.org/0000000276479383</orcidid><orcidid>https://orcid.org/000000017982734X</orcidid><orcidid>https://orcid.org/0000000327875029</orcidid><orcidid>https://orcid.org/0000000157248486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2018-01, Vol.165 (3), p.F238-F245
issn 0013-4651
1945-7111
language eng
recordid cdi_osti_scitechconnect_1425998
source Institute of Physics Journals
subjects fuel cells
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
membrane electrode assembly
unsupported electrocatalyst
title Fuel Cell Performance Implications of Membrane Electrode Assembly Fabrication with Platinum-Nickel Nanowire Catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel%20Cell%20Performance%20Implications%20of%20Membrane%20Electrode%20Assembly%20Fabrication%20with%20Platinum-Nickel%20Nanowire%20Catalysts&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Mauger,%20Scott%20A.&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2018-01-01&rft.volume=165&rft.issue=3&rft.spage=F238&rft.epage=F245&rft.pages=F238-F245&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.1061803jes&rft_dat=%3Ciop_osti_%3E1061803JES%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true