Recommendations for diagnosing effective radiative forcing from climate models for CMIP6

The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than tradi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2016-10, Vol.121 (20), p.12,460-12,475
Hauptverfasser: Forster, Piers M., Richardson, Thomas, Maycock, Amanda C., Smith, Christopher J., Samset, Bjorn H., Myhre, Gunnar, Andrews, Timothy, Pincus, Robert, Schulz, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12,475
container_issue 20
container_start_page 12,460
container_title Journal of geophysical research. Atmospheres
container_volume 121
creator Forster, Piers M.
Richardson, Thomas
Maycock, Amanda C.
Smith, Christopher J.
Samset, Bjorn H.
Myhre, Gunnar
Andrews, Timothy
Pincus, Robert
Schulz, Michael
description The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m−2. For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. Key Points We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular)
doi_str_mv 10.1002/2016JD025320
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1425639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4266973031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5040-225bc3df8cfc07985f84500803b2bc16c1366a85b6d5b21a935e2ab0d340812a3</originalsourceid><addsrcrecordid>eNqN0UFLwzAUAOAiCo65mz-g6MWD1ZekSdujbDqViSIKu4U0TWZG28ykU_z3ZquIeBBzySP58ngvL4oOEZwhAHyOAbHbCWBKMOxEA4xYkeRFwXa_42y-H428X0JYOZCUpoNo_qikbRrVVqIztvWxti6ujFi01pt2ESutlezMm4qdCMfbKBC5udPONrGsTSM6FTe2UnX_fHx388AOoj0taq9GX_swer66fBpfJ7P76c34YpZICikkGNNSkkrnUkvIipzqPKXb8kpcSsQkIoyJnJasoiVGoiBUYVFCRVLIERZkGB31ea3vDPfSdEq-SNu2oWyOUkwZKQI66dHK2de18h1vjJeqrkWr7NpzlLOUZoxk8A9KIQuFQhbo8S-6tGvXhm6DCl1ghMgm4WmvpLPeO6X5yoUvcx8cAd9Mjv-cXOCk5--mVh9_Wn47fZxQQgogn3qZluI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845021130</pqid></control><display><type>article</type><title>Recommendations for diagnosing effective radiative forcing from climate models for CMIP6</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Alma/SFX Local Collection</source><creator>Forster, Piers M. ; Richardson, Thomas ; Maycock, Amanda C. ; Smith, Christopher J. ; Samset, Bjorn H. ; Myhre, Gunnar ; Andrews, Timothy ; Pincus, Robert ; Schulz, Michael</creator><creatorcontrib>Forster, Piers M. ; Richardson, Thomas ; Maycock, Amanda C. ; Smith, Christopher J. ; Samset, Bjorn H. ; Myhre, Gunnar ; Andrews, Timothy ; Pincus, Robert ; Schulz, Michael ; University of Colorado Boulder, Boulder, Colorado, USA</creatorcontrib><description>The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m−2. For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. Key Points We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular)</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2016JD025320</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>AerChemMIP ; Climate ; Climate models ; Climatology ; CMIP6 ; Computation ; Confidence intervals ; effective radiative forcing ; ENVIRONMENTAL SCIENCES ; Estimating ; Geophysics ; Global climate ; Marine ; Radiative forcing ; RFMIP ; Sea ice ; Sea surface temperature</subject><ispartof>Journal of geophysical research. Atmospheres, 2016-10, Vol.121 (20), p.12,460-12,475</ispartof><rights>2016. The Authors.</rights><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5040-225bc3df8cfc07985f84500803b2bc16c1366a85b6d5b21a935e2ab0d340812a3</citedby><cites>FETCH-LOGICAL-c5040-225bc3df8cfc07985f84500803b2bc16c1366a85b6d5b21a935e2ab0d340812a3</cites><orcidid>0000-0002-0016-3470 ; 0000000200163470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JD025320$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JD025320$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1425639$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Forster, Piers M.</creatorcontrib><creatorcontrib>Richardson, Thomas</creatorcontrib><creatorcontrib>Maycock, Amanda C.</creatorcontrib><creatorcontrib>Smith, Christopher J.</creatorcontrib><creatorcontrib>Samset, Bjorn H.</creatorcontrib><creatorcontrib>Myhre, Gunnar</creatorcontrib><creatorcontrib>Andrews, Timothy</creatorcontrib><creatorcontrib>Pincus, Robert</creatorcontrib><creatorcontrib>Schulz, Michael</creatorcontrib><creatorcontrib>University of Colorado Boulder, Boulder, Colorado, USA</creatorcontrib><title>Recommendations for diagnosing effective radiative forcing from climate models for CMIP6</title><title>Journal of geophysical research. Atmospheres</title><description>The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m−2. For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. Key Points We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular)</description><subject>AerChemMIP</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climatology</subject><subject>CMIP6</subject><subject>Computation</subject><subject>Confidence intervals</subject><subject>effective radiative forcing</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Estimating</subject><subject>Geophysics</subject><subject>Global climate</subject><subject>Marine</subject><subject>Radiative forcing</subject><subject>RFMIP</subject><subject>Sea ice</subject><subject>Sea surface temperature</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqN0UFLwzAUAOAiCo65mz-g6MWD1ZekSdujbDqViSIKu4U0TWZG28ykU_z3ZquIeBBzySP58ngvL4oOEZwhAHyOAbHbCWBKMOxEA4xYkeRFwXa_42y-H428X0JYOZCUpoNo_qikbRrVVqIztvWxti6ujFi01pt2ESutlezMm4qdCMfbKBC5udPONrGsTSM6FTe2UnX_fHx388AOoj0taq9GX_swer66fBpfJ7P76c34YpZICikkGNNSkkrnUkvIipzqPKXb8kpcSsQkIoyJnJasoiVGoiBUYVFCRVLIERZkGB31ea3vDPfSdEq-SNu2oWyOUkwZKQI66dHK2de18h1vjJeqrkWr7NpzlLOUZoxk8A9KIQuFQhbo8S-6tGvXhm6DCl1ghMgm4WmvpLPeO6X5yoUvcx8cAd9Mjv-cXOCk5--mVh9_Wn47fZxQQgogn3qZluI</recordid><startdate>20161027</startdate><enddate>20161027</enddate><creator>Forster, Piers M.</creator><creator>Richardson, Thomas</creator><creator>Maycock, Amanda C.</creator><creator>Smith, Christopher J.</creator><creator>Samset, Bjorn H.</creator><creator>Myhre, Gunnar</creator><creator>Andrews, Timothy</creator><creator>Pincus, Robert</creator><creator>Schulz, Michael</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0016-3470</orcidid><orcidid>https://orcid.org/0000000200163470</orcidid></search><sort><creationdate>20161027</creationdate><title>Recommendations for diagnosing effective radiative forcing from climate models for CMIP6</title><author>Forster, Piers M. ; Richardson, Thomas ; Maycock, Amanda C. ; Smith, Christopher J. ; Samset, Bjorn H. ; Myhre, Gunnar ; Andrews, Timothy ; Pincus, Robert ; Schulz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5040-225bc3df8cfc07985f84500803b2bc16c1366a85b6d5b21a935e2ab0d340812a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AerChemMIP</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climatology</topic><topic>CMIP6</topic><topic>Computation</topic><topic>Confidence intervals</topic><topic>effective radiative forcing</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Estimating</topic><topic>Geophysics</topic><topic>Global climate</topic><topic>Marine</topic><topic>Radiative forcing</topic><topic>RFMIP</topic><topic>Sea ice</topic><topic>Sea surface temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forster, Piers M.</creatorcontrib><creatorcontrib>Richardson, Thomas</creatorcontrib><creatorcontrib>Maycock, Amanda C.</creatorcontrib><creatorcontrib>Smith, Christopher J.</creatorcontrib><creatorcontrib>Samset, Bjorn H.</creatorcontrib><creatorcontrib>Myhre, Gunnar</creatorcontrib><creatorcontrib>Andrews, Timothy</creatorcontrib><creatorcontrib>Pincus, Robert</creatorcontrib><creatorcontrib>Schulz, Michael</creatorcontrib><creatorcontrib>University of Colorado Boulder, Boulder, Colorado, USA</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forster, Piers M.</au><au>Richardson, Thomas</au><au>Maycock, Amanda C.</au><au>Smith, Christopher J.</au><au>Samset, Bjorn H.</au><au>Myhre, Gunnar</au><au>Andrews, Timothy</au><au>Pincus, Robert</au><au>Schulz, Michael</au><aucorp>University of Colorado Boulder, Boulder, Colorado, USA</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recommendations for diagnosing effective radiative forcing from climate models for CMIP6</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2016-10-27</date><risdate>2016</risdate><volume>121</volume><issue>20</issue><spage>12,460</spage><epage>12,475</epage><pages>12,460-12,475</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m−2. For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. Key Points We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular)</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JD025320</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0016-3470</orcidid><orcidid>https://orcid.org/0000000200163470</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2016-10, Vol.121 (20), p.12,460-12,475
issn 2169-897X
2169-8996
language eng
recordid cdi_osti_scitechconnect_1425639
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Alma/SFX Local Collection
subjects AerChemMIP
Climate
Climate models
Climatology
CMIP6
Computation
Confidence intervals
effective radiative forcing
ENVIRONMENTAL SCIENCES
Estimating
Geophysics
Global climate
Marine
Radiative forcing
RFMIP
Sea ice
Sea surface temperature
title Recommendations for diagnosing effective radiative forcing from climate models for CMIP6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recommendations%20for%20diagnosing%20effective%20radiative%20forcing%20from%20climate%20models%20for%20CMIP6&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Forster,%20Piers%20M.&rft.aucorp=University%20of%20Colorado%20Boulder,%20Boulder,%20Colorado,%20USA&rft.date=2016-10-27&rft.volume=121&rft.issue=20&rft.spage=12,460&rft.epage=12,475&rft.pages=12,460-12,475&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2016JD025320&rft_dat=%3Cproquest_osti_%3E4266973031%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845021130&rft_id=info:pmid/&rfr_iscdi=true