Thermal effect of climate change on groundwater‐fed ecosystems

Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat‐transport equations are used to identify key processes that control the long‐term thermal response of springs and other groundwater discharge to climate change, in particu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2017-04, Vol.53 (4), p.3341-3351
Hauptverfasser: Burns, Erick R., Zhu, Yonghui, Zhan, Hongbin, Manga, Michael, Williams, Colin F., Ingebritsen, Steven E., Dunham, Jason B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3351
container_issue 4
container_start_page 3341
container_title Water resources research
container_volume 53
creator Burns, Erick R.
Zhu, Yonghui
Zhan, Hongbin
Manga, Michael
Williams, Colin F.
Ingebritsen, Steven E.
Dunham, Jason B.
description Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat‐transport equations are used to identify key processes that control the long‐term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land‐surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater‐dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land‐surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years. Plain Language Summary Tools are developed (and demonstrated) that allow prediction of the effect of climate change on groundwater temperature at springs and seeps that support critical habitat. Key Points Computed temperature change at springs depends on changes to land surface temperature and to groundwater recharge temperature A new analytic solution can be used to estimate the timing of thermal response to climate change For the sample system examined, thermal response time is of the same order as climate change (i.e., tens to hundreds of years)
doi_str_mv 10.1002/2016WR020007
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1425401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899832056</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5049-9ae886790ce7cde379fd7bb2ac850ebbc4fc534cd668b262f2361916f34b8d463</originalsourceid><addsrcrecordid>eNp90M1Kw0AQB_BFFKzVmw8Q9Gp09iO72ZtS_IKCUCo9Lslmtk1ps3U3pfTmI_iMPokp8eDJ08Dw489_hpBLCrcUgN0xoHI2AQYA6ogMqBYiVVrxYzIAEDylXKtTchbjEoCKTKoBuZ8uMKyLVYLOoW0T7xK7qtdFi4ldFM0cE98k8-C3TbXrluH788thlaD1cR9bXMdzcuKKVcSL3zkk70-P09FLOn57fh09jNMiA6FTXWCeS6XBorIVcqVdpcqSFTbPAMvSCmczLmwlZV4yyRzjkmoqHRdlXgnJh-Sqz_WxrU20dYt2YX3TdK0NFSwTQDt03aNN8B9bjK1Z-m1oul6G5lrnnEF2iLrplQ0-xoDObEJ3ctgbCubwSPP3kR3nPd_VK9z_a81sMpowluWa_wAwZHQz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899832056</pqid></control><display><type>article</type><title>Thermal effect of climate change on groundwater‐fed ecosystems</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Burns, Erick R. ; Zhu, Yonghui ; Zhan, Hongbin ; Manga, Michael ; Williams, Colin F. ; Ingebritsen, Steven E. ; Dunham, Jason B.</creator><creatorcontrib>Burns, Erick R. ; Zhu, Yonghui ; Zhan, Hongbin ; Manga, Michael ; Williams, Colin F. ; Ingebritsen, Steven E. ; Dunham, Jason B. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; United States Geological Survey, Reston, VA (United States)</creatorcontrib><description>Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat‐transport equations are used to identify key processes that control the long‐term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land‐surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater‐dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land‐surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years. Plain Language Summary Tools are developed (and demonstrated) that allow prediction of the effect of climate change on groundwater temperature at springs and seeps that support critical habitat. Key Points Computed temperature change at springs depends on changes to land surface temperature and to groundwater recharge temperature A new analytic solution can be used to estimate the timing of thermal response to climate change For the sample system examined, thermal response time is of the same order as climate change (i.e., tens to hundreds of years)</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2016WR020007</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>assessment ; biota ; Climate ; Climate change ; Climate effects ; Ecosystems ; ENVIRONMENTAL SCIENCES ; global climate change ; Groundwater ; Groundwater basins ; Groundwater discharge ; Groundwater recharge ; groundwater temperature ; Groundwater temperatures ; Highlands ; Lakes ; Land surface temperature ; Mathematical models ; Medical sciences ; prediction ; Seepage ; Seepages ; Solutions ; Steady state ; Surface temperature ; Temperature ; Temperature changes ; Temperature effects ; Thermal response ; Vadose water ; vulnerability ; Water springs</subject><ispartof>Water resources research, 2017-04, Vol.53 (4), p.3341-3351</ispartof><rights>2017. The Authors.</rights><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5049-9ae886790ce7cde379fd7bb2ac850ebbc4fc534cd668b262f2361916f34b8d463</citedby><cites>FETCH-LOGICAL-a5049-9ae886790ce7cde379fd7bb2ac850ebbc4fc534cd668b262f2361916f34b8d463</cites><orcidid>0000-0002-6608-5188 ; 0000-0002-1747-0506 ; 0000-0003-2196-5496 ; 0000-0002-6268-0633 ; 0000-0001-6917-9369 ; 0000-0003-2060-4904 ; 0000-0003-3286-4682 ; 0000000262680633 ; 0000000321965496 ; 0000000169179369 ; 0000000332864682 ; 0000000217470506 ; 0000000266085188 ; 0000000320604904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016WR020007$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016WR020007$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1425401$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Burns, Erick R.</creatorcontrib><creatorcontrib>Zhu, Yonghui</creatorcontrib><creatorcontrib>Zhan, Hongbin</creatorcontrib><creatorcontrib>Manga, Michael</creatorcontrib><creatorcontrib>Williams, Colin F.</creatorcontrib><creatorcontrib>Ingebritsen, Steven E.</creatorcontrib><creatorcontrib>Dunham, Jason B.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>United States Geological Survey, Reston, VA (United States)</creatorcontrib><title>Thermal effect of climate change on groundwater‐fed ecosystems</title><title>Water resources research</title><description>Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat‐transport equations are used to identify key processes that control the long‐term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land‐surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater‐dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land‐surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years. Plain Language Summary Tools are developed (and demonstrated) that allow prediction of the effect of climate change on groundwater temperature at springs and seeps that support critical habitat. Key Points Computed temperature change at springs depends on changes to land surface temperature and to groundwater recharge temperature A new analytic solution can be used to estimate the timing of thermal response to climate change For the sample system examined, thermal response time is of the same order as climate change (i.e., tens to hundreds of years)</description><subject>assessment</subject><subject>biota</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Ecosystems</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>global climate change</subject><subject>Groundwater</subject><subject>Groundwater basins</subject><subject>Groundwater discharge</subject><subject>Groundwater recharge</subject><subject>groundwater temperature</subject><subject>Groundwater temperatures</subject><subject>Highlands</subject><subject>Lakes</subject><subject>Land surface temperature</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>prediction</subject><subject>Seepage</subject><subject>Seepages</subject><subject>Solutions</subject><subject>Steady state</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature changes</subject><subject>Temperature effects</subject><subject>Thermal response</subject><subject>Vadose water</subject><subject>vulnerability</subject><subject>Water springs</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90M1Kw0AQB_BFFKzVmw8Q9Gp09iO72ZtS_IKCUCo9Lslmtk1ps3U3pfTmI_iMPokp8eDJ08Dw489_hpBLCrcUgN0xoHI2AQYA6ogMqBYiVVrxYzIAEDylXKtTchbjEoCKTKoBuZ8uMKyLVYLOoW0T7xK7qtdFi4ldFM0cE98k8-C3TbXrluH788thlaD1cR9bXMdzcuKKVcSL3zkk70-P09FLOn57fh09jNMiA6FTXWCeS6XBorIVcqVdpcqSFTbPAMvSCmczLmwlZV4yyRzjkmoqHRdlXgnJh-Sqz_WxrU20dYt2YX3TdK0NFSwTQDt03aNN8B9bjK1Z-m1oul6G5lrnnEF2iLrplQ0-xoDObEJ3ctgbCubwSPP3kR3nPd_VK9z_a81sMpowluWa_wAwZHQz</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Burns, Erick R.</creator><creator>Zhu, Yonghui</creator><creator>Zhan, Hongbin</creator><creator>Manga, Michael</creator><creator>Williams, Colin F.</creator><creator>Ingebritsen, Steven E.</creator><creator>Dunham, Jason B.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union (AGU)</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6608-5188</orcidid><orcidid>https://orcid.org/0000-0002-1747-0506</orcidid><orcidid>https://orcid.org/0000-0003-2196-5496</orcidid><orcidid>https://orcid.org/0000-0002-6268-0633</orcidid><orcidid>https://orcid.org/0000-0001-6917-9369</orcidid><orcidid>https://orcid.org/0000-0003-2060-4904</orcidid><orcidid>https://orcid.org/0000-0003-3286-4682</orcidid><orcidid>https://orcid.org/0000000262680633</orcidid><orcidid>https://orcid.org/0000000321965496</orcidid><orcidid>https://orcid.org/0000000169179369</orcidid><orcidid>https://orcid.org/0000000332864682</orcidid><orcidid>https://orcid.org/0000000217470506</orcidid><orcidid>https://orcid.org/0000000266085188</orcidid><orcidid>https://orcid.org/0000000320604904</orcidid></search><sort><creationdate>201704</creationdate><title>Thermal effect of climate change on groundwater‐fed ecosystems</title><author>Burns, Erick R. ; Zhu, Yonghui ; Zhan, Hongbin ; Manga, Michael ; Williams, Colin F. ; Ingebritsen, Steven E. ; Dunham, Jason B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5049-9ae886790ce7cde379fd7bb2ac850ebbc4fc534cd668b262f2361916f34b8d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>assessment</topic><topic>biota</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Ecosystems</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>global climate change</topic><topic>Groundwater</topic><topic>Groundwater basins</topic><topic>Groundwater discharge</topic><topic>Groundwater recharge</topic><topic>groundwater temperature</topic><topic>Groundwater temperatures</topic><topic>Highlands</topic><topic>Lakes</topic><topic>Land surface temperature</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>prediction</topic><topic>Seepage</topic><topic>Seepages</topic><topic>Solutions</topic><topic>Steady state</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature changes</topic><topic>Temperature effects</topic><topic>Thermal response</topic><topic>Vadose water</topic><topic>vulnerability</topic><topic>Water springs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burns, Erick R.</creatorcontrib><creatorcontrib>Zhu, Yonghui</creatorcontrib><creatorcontrib>Zhan, Hongbin</creatorcontrib><creatorcontrib>Manga, Michael</creatorcontrib><creatorcontrib>Williams, Colin F.</creatorcontrib><creatorcontrib>Ingebritsen, Steven E.</creatorcontrib><creatorcontrib>Dunham, Jason B.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>United States Geological Survey, Reston, VA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burns, Erick R.</au><au>Zhu, Yonghui</au><au>Zhan, Hongbin</au><au>Manga, Michael</au><au>Williams, Colin F.</au><au>Ingebritsen, Steven E.</au><au>Dunham, Jason B.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>United States Geological Survey, Reston, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal effect of climate change on groundwater‐fed ecosystems</atitle><jtitle>Water resources research</jtitle><date>2017-04</date><risdate>2017</risdate><volume>53</volume><issue>4</issue><spage>3341</spage><epage>3351</epage><pages>3341-3351</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat‐transport equations are used to identify key processes that control the long‐term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land‐surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater‐dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land‐surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years. Plain Language Summary Tools are developed (and demonstrated) that allow prediction of the effect of climate change on groundwater temperature at springs and seeps that support critical habitat. Key Points Computed temperature change at springs depends on changes to land surface temperature and to groundwater recharge temperature A new analytic solution can be used to estimate the timing of thermal response to climate change For the sample system examined, thermal response time is of the same order as climate change (i.e., tens to hundreds of years)</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016WR020007</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6608-5188</orcidid><orcidid>https://orcid.org/0000-0002-1747-0506</orcidid><orcidid>https://orcid.org/0000-0003-2196-5496</orcidid><orcidid>https://orcid.org/0000-0002-6268-0633</orcidid><orcidid>https://orcid.org/0000-0001-6917-9369</orcidid><orcidid>https://orcid.org/0000-0003-2060-4904</orcidid><orcidid>https://orcid.org/0000-0003-3286-4682</orcidid><orcidid>https://orcid.org/0000000262680633</orcidid><orcidid>https://orcid.org/0000000321965496</orcidid><orcidid>https://orcid.org/0000000169179369</orcidid><orcidid>https://orcid.org/0000000332864682</orcidid><orcidid>https://orcid.org/0000000217470506</orcidid><orcidid>https://orcid.org/0000000266085188</orcidid><orcidid>https://orcid.org/0000000320604904</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2017-04, Vol.53 (4), p.3341-3351
issn 0043-1397
1944-7973
language eng
recordid cdi_osti_scitechconnect_1425401
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects assessment
biota
Climate
Climate change
Climate effects
Ecosystems
ENVIRONMENTAL SCIENCES
global climate change
Groundwater
Groundwater basins
Groundwater discharge
Groundwater recharge
groundwater temperature
Groundwater temperatures
Highlands
Lakes
Land surface temperature
Mathematical models
Medical sciences
prediction
Seepage
Seepages
Solutions
Steady state
Surface temperature
Temperature
Temperature changes
Temperature effects
Thermal response
Vadose water
vulnerability
Water springs
title Thermal effect of climate change on groundwater‐fed ecosystems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20effect%20of%20climate%20change%20on%20groundwater%E2%80%90fed%20ecosystems&rft.jtitle=Water%20resources%20research&rft.au=Burns,%20Erick%20R.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-04&rft.volume=53&rft.issue=4&rft.spage=3341&rft.epage=3351&rft.pages=3341-3351&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2016WR020007&rft_dat=%3Cproquest_osti_%3E1899832056%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899832056&rft_id=info:pmid/&rfr_iscdi=true