Thermal effect of climate change on groundwater‐fed ecosystems
Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat‐transport equations are used to identify key processes that control the long‐term thermal response of springs and other groundwater discharge to climate change, in particu...
Gespeichert in:
Veröffentlicht in: | Water resources research 2017-04, Vol.53 (4), p.3341-3351 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3351 |
---|---|
container_issue | 4 |
container_start_page | 3341 |
container_title | Water resources research |
container_volume | 53 |
creator | Burns, Erick R. Zhu, Yonghui Zhan, Hongbin Manga, Michael Williams, Colin F. Ingebritsen, Steven E. Dunham, Jason B. |
description | Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat‐transport equations are used to identify key processes that control the long‐term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land‐surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater‐dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land‐surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.
Plain Language Summary
Tools are developed (and demonstrated) that allow prediction of the effect of climate change on groundwater temperature at springs and seeps that support critical habitat.
Key Points
Computed temperature change at springs depends on changes to land surface temperature and to groundwater recharge temperature
A new analytic solution can be used to estimate the timing of thermal response to climate change
For the sample system examined, thermal response time is of the same order as climate change (i.e., tens to hundreds of years) |
doi_str_mv | 10.1002/2016WR020007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1425401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899832056</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5049-9ae886790ce7cde379fd7bb2ac850ebbc4fc534cd668b262f2361916f34b8d463</originalsourceid><addsrcrecordid>eNp90M1Kw0AQB_BFFKzVmw8Q9Gp09iO72ZtS_IKCUCo9Lslmtk1ps3U3pfTmI_iMPokp8eDJ08Dw489_hpBLCrcUgN0xoHI2AQYA6ogMqBYiVVrxYzIAEDylXKtTchbjEoCKTKoBuZ8uMKyLVYLOoW0T7xK7qtdFi4ldFM0cE98k8-C3TbXrluH788thlaD1cR9bXMdzcuKKVcSL3zkk70-P09FLOn57fh09jNMiA6FTXWCeS6XBorIVcqVdpcqSFTbPAMvSCmczLmwlZV4yyRzjkmoqHRdlXgnJh-Sqz_WxrU20dYt2YX3TdK0NFSwTQDt03aNN8B9bjK1Z-m1oul6G5lrnnEF2iLrplQ0-xoDObEJ3ctgbCubwSPP3kR3nPd_VK9z_a81sMpowluWa_wAwZHQz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899832056</pqid></control><display><type>article</type><title>Thermal effect of climate change on groundwater‐fed ecosystems</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Burns, Erick R. ; Zhu, Yonghui ; Zhan, Hongbin ; Manga, Michael ; Williams, Colin F. ; Ingebritsen, Steven E. ; Dunham, Jason B.</creator><creatorcontrib>Burns, Erick R. ; Zhu, Yonghui ; Zhan, Hongbin ; Manga, Michael ; Williams, Colin F. ; Ingebritsen, Steven E. ; Dunham, Jason B. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; United States Geological Survey, Reston, VA (United States)</creatorcontrib><description>Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat‐transport equations are used to identify key processes that control the long‐term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land‐surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater‐dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land‐surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.
Plain Language Summary
Tools are developed (and demonstrated) that allow prediction of the effect of climate change on groundwater temperature at springs and seeps that support critical habitat.
Key Points
Computed temperature change at springs depends on changes to land surface temperature and to groundwater recharge temperature
A new analytic solution can be used to estimate the timing of thermal response to climate change
For the sample system examined, thermal response time is of the same order as climate change (i.e., tens to hundreds of years)</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2016WR020007</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>assessment ; biota ; Climate ; Climate change ; Climate effects ; Ecosystems ; ENVIRONMENTAL SCIENCES ; global climate change ; Groundwater ; Groundwater basins ; Groundwater discharge ; Groundwater recharge ; groundwater temperature ; Groundwater temperatures ; Highlands ; Lakes ; Land surface temperature ; Mathematical models ; Medical sciences ; prediction ; Seepage ; Seepages ; Solutions ; Steady state ; Surface temperature ; Temperature ; Temperature changes ; Temperature effects ; Thermal response ; Vadose water ; vulnerability ; Water springs</subject><ispartof>Water resources research, 2017-04, Vol.53 (4), p.3341-3351</ispartof><rights>2017. The Authors.</rights><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5049-9ae886790ce7cde379fd7bb2ac850ebbc4fc534cd668b262f2361916f34b8d463</citedby><cites>FETCH-LOGICAL-a5049-9ae886790ce7cde379fd7bb2ac850ebbc4fc534cd668b262f2361916f34b8d463</cites><orcidid>0000-0002-6608-5188 ; 0000-0002-1747-0506 ; 0000-0003-2196-5496 ; 0000-0002-6268-0633 ; 0000-0001-6917-9369 ; 0000-0003-2060-4904 ; 0000-0003-3286-4682 ; 0000000262680633 ; 0000000321965496 ; 0000000169179369 ; 0000000332864682 ; 0000000217470506 ; 0000000266085188 ; 0000000320604904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016WR020007$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016WR020007$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1425401$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Burns, Erick R.</creatorcontrib><creatorcontrib>Zhu, Yonghui</creatorcontrib><creatorcontrib>Zhan, Hongbin</creatorcontrib><creatorcontrib>Manga, Michael</creatorcontrib><creatorcontrib>Williams, Colin F.</creatorcontrib><creatorcontrib>Ingebritsen, Steven E.</creatorcontrib><creatorcontrib>Dunham, Jason B.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>United States Geological Survey, Reston, VA (United States)</creatorcontrib><title>Thermal effect of climate change on groundwater‐fed ecosystems</title><title>Water resources research</title><description>Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat‐transport equations are used to identify key processes that control the long‐term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land‐surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater‐dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land‐surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.
Plain Language Summary
Tools are developed (and demonstrated) that allow prediction of the effect of climate change on groundwater temperature at springs and seeps that support critical habitat.
Key Points
Computed temperature change at springs depends on changes to land surface temperature and to groundwater recharge temperature
A new analytic solution can be used to estimate the timing of thermal response to climate change
For the sample system examined, thermal response time is of the same order as climate change (i.e., tens to hundreds of years)</description><subject>assessment</subject><subject>biota</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Ecosystems</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>global climate change</subject><subject>Groundwater</subject><subject>Groundwater basins</subject><subject>Groundwater discharge</subject><subject>Groundwater recharge</subject><subject>groundwater temperature</subject><subject>Groundwater temperatures</subject><subject>Highlands</subject><subject>Lakes</subject><subject>Land surface temperature</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>prediction</subject><subject>Seepage</subject><subject>Seepages</subject><subject>Solutions</subject><subject>Steady state</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature changes</subject><subject>Temperature effects</subject><subject>Thermal response</subject><subject>Vadose water</subject><subject>vulnerability</subject><subject>Water springs</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90M1Kw0AQB_BFFKzVmw8Q9Gp09iO72ZtS_IKCUCo9Lslmtk1ps3U3pfTmI_iMPokp8eDJ08Dw489_hpBLCrcUgN0xoHI2AQYA6ogMqBYiVVrxYzIAEDylXKtTchbjEoCKTKoBuZ8uMKyLVYLOoW0T7xK7qtdFi4ldFM0cE98k8-C3TbXrluH788thlaD1cR9bXMdzcuKKVcSL3zkk70-P09FLOn57fh09jNMiA6FTXWCeS6XBorIVcqVdpcqSFTbPAMvSCmczLmwlZV4yyRzjkmoqHRdlXgnJh-Sqz_WxrU20dYt2YX3TdK0NFSwTQDt03aNN8B9bjK1Z-m1oul6G5lrnnEF2iLrplQ0-xoDObEJ3ctgbCubwSPP3kR3nPd_VK9z_a81sMpowluWa_wAwZHQz</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Burns, Erick R.</creator><creator>Zhu, Yonghui</creator><creator>Zhan, Hongbin</creator><creator>Manga, Michael</creator><creator>Williams, Colin F.</creator><creator>Ingebritsen, Steven E.</creator><creator>Dunham, Jason B.</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union (AGU)</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6608-5188</orcidid><orcidid>https://orcid.org/0000-0002-1747-0506</orcidid><orcidid>https://orcid.org/0000-0003-2196-5496</orcidid><orcidid>https://orcid.org/0000-0002-6268-0633</orcidid><orcidid>https://orcid.org/0000-0001-6917-9369</orcidid><orcidid>https://orcid.org/0000-0003-2060-4904</orcidid><orcidid>https://orcid.org/0000-0003-3286-4682</orcidid><orcidid>https://orcid.org/0000000262680633</orcidid><orcidid>https://orcid.org/0000000321965496</orcidid><orcidid>https://orcid.org/0000000169179369</orcidid><orcidid>https://orcid.org/0000000332864682</orcidid><orcidid>https://orcid.org/0000000217470506</orcidid><orcidid>https://orcid.org/0000000266085188</orcidid><orcidid>https://orcid.org/0000000320604904</orcidid></search><sort><creationdate>201704</creationdate><title>Thermal effect of climate change on groundwater‐fed ecosystems</title><author>Burns, Erick R. ; Zhu, Yonghui ; Zhan, Hongbin ; Manga, Michael ; Williams, Colin F. ; Ingebritsen, Steven E. ; Dunham, Jason B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5049-9ae886790ce7cde379fd7bb2ac850ebbc4fc534cd668b262f2361916f34b8d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>assessment</topic><topic>biota</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Ecosystems</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>global climate change</topic><topic>Groundwater</topic><topic>Groundwater basins</topic><topic>Groundwater discharge</topic><topic>Groundwater recharge</topic><topic>groundwater temperature</topic><topic>Groundwater temperatures</topic><topic>Highlands</topic><topic>Lakes</topic><topic>Land surface temperature</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>prediction</topic><topic>Seepage</topic><topic>Seepages</topic><topic>Solutions</topic><topic>Steady state</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature changes</topic><topic>Temperature effects</topic><topic>Thermal response</topic><topic>Vadose water</topic><topic>vulnerability</topic><topic>Water springs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burns, Erick R.</creatorcontrib><creatorcontrib>Zhu, Yonghui</creatorcontrib><creatorcontrib>Zhan, Hongbin</creatorcontrib><creatorcontrib>Manga, Michael</creatorcontrib><creatorcontrib>Williams, Colin F.</creatorcontrib><creatorcontrib>Ingebritsen, Steven E.</creatorcontrib><creatorcontrib>Dunham, Jason B.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>United States Geological Survey, Reston, VA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burns, Erick R.</au><au>Zhu, Yonghui</au><au>Zhan, Hongbin</au><au>Manga, Michael</au><au>Williams, Colin F.</au><au>Ingebritsen, Steven E.</au><au>Dunham, Jason B.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>United States Geological Survey, Reston, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal effect of climate change on groundwater‐fed ecosystems</atitle><jtitle>Water resources research</jtitle><date>2017-04</date><risdate>2017</risdate><volume>53</volume><issue>4</issue><spage>3341</spage><epage>3351</epage><pages>3341-3351</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat‐transport equations are used to identify key processes that control the long‐term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land‐surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater‐dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land‐surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.
Plain Language Summary
Tools are developed (and demonstrated) that allow prediction of the effect of climate change on groundwater temperature at springs and seeps that support critical habitat.
Key Points
Computed temperature change at springs depends on changes to land surface temperature and to groundwater recharge temperature
A new analytic solution can be used to estimate the timing of thermal response to climate change
For the sample system examined, thermal response time is of the same order as climate change (i.e., tens to hundreds of years)</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2016WR020007</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6608-5188</orcidid><orcidid>https://orcid.org/0000-0002-1747-0506</orcidid><orcidid>https://orcid.org/0000-0003-2196-5496</orcidid><orcidid>https://orcid.org/0000-0002-6268-0633</orcidid><orcidid>https://orcid.org/0000-0001-6917-9369</orcidid><orcidid>https://orcid.org/0000-0003-2060-4904</orcidid><orcidid>https://orcid.org/0000-0003-3286-4682</orcidid><orcidid>https://orcid.org/0000000262680633</orcidid><orcidid>https://orcid.org/0000000321965496</orcidid><orcidid>https://orcid.org/0000000169179369</orcidid><orcidid>https://orcid.org/0000000332864682</orcidid><orcidid>https://orcid.org/0000000217470506</orcidid><orcidid>https://orcid.org/0000000266085188</orcidid><orcidid>https://orcid.org/0000000320604904</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2017-04, Vol.53 (4), p.3341-3351 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_osti_scitechconnect_1425401 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | assessment biota Climate Climate change Climate effects Ecosystems ENVIRONMENTAL SCIENCES global climate change Groundwater Groundwater basins Groundwater discharge Groundwater recharge groundwater temperature Groundwater temperatures Highlands Lakes Land surface temperature Mathematical models Medical sciences prediction Seepage Seepages Solutions Steady state Surface temperature Temperature Temperature changes Temperature effects Thermal response Vadose water vulnerability Water springs |
title | Thermal effect of climate change on groundwater‐fed ecosystems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20effect%20of%20climate%20change%20on%20groundwater%E2%80%90fed%20ecosystems&rft.jtitle=Water%20resources%20research&rft.au=Burns,%20Erick%20R.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-04&rft.volume=53&rft.issue=4&rft.spage=3341&rft.epage=3351&rft.pages=3341-3351&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2016WR020007&rft_dat=%3Cproquest_osti_%3E1899832056%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899832056&rft_id=info:pmid/&rfr_iscdi=true |