The Deep Underground Neutrino Experiment: The precision era of neutrino physics

The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known, and we have the elements to plan a judicious exploration of new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomische Nachrichten 2017-12, Vol.338 (9-10), p.993-999
1. Verfasser: Kemp, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 999
container_issue 9-10
container_start_page 993
container_title Astronomische Nachrichten
container_volume 338
creator Kemp, E.
description The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known, and we have the elements to plan a judicious exploration of new scenarios that are opened by these recent advances. With precise measurements, we can test the three‐neutrino paradigm, neutrino mass hierarchy, and charge conjugation parity (CP) asymmetry in the lepton sector. The future long‐baseline experiments are considered to be a fundamental tool to deepen our knowledge of electroweak interactions. The Deep Underground Neutrino Experiment (DUNE) will detect a broadband neutrino beam from Fermilab in an underground massive liquid argon time‐projection chamber at an L/E of about 103 km GeV−1 to reach good sensitivity for CP‐phase measurements and the determination of the mass hierarchy. The dimensions and the depth of the far detector also create an excellent opportunity to look for rare signals like proton decay to study violation of the baryonic number, as well as supernova neutrino bursts, broadening the scope of the experiment to astrophysics and associated impacts in cosmology. In this paper, we discuss the physics motivations and the main experimental features of the DUNE project required to reach its scientific goals.
doi_str_mv 10.1002/asna.201713417
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1423254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980029986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3847-b439de5433dd5fa140359333b1ef6e9e596232ca2de24dcce2f747494dc1bd3c3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqVw5WzBOcWvJDW3CspDqtoD7dlK7Q11VexgJ4L-e1yFx5HT7krfjGYHoUtKRpQQdlNFV40YoSXlgpZHaEBzRjMupThGA0KIyArOy1N0FuM2nbJgdIAWyw3ge4AGr5yB8Bp85wyeQ9cG6zyefjYQ7Bu49hYfyCaAttF6hyFU2NfY_ZDNZh-tjufopK52ES6-5xCtHqbLu6dstnh8vpvMMs3HoszWgksDueDcmLyuqCA8l5zzNYW6AAl5SseZrpgBJozWwOpSlEKmna4N13yIrnpfH1urorYt6I32zoFuFRVJnMyH6LqHmuDfO4it2vouuJRLUTlOnUk5LhI16ikdfIwBatWkl6uwV5SoQ7Pq0Kz6bTYJZC_4sDvY_0Oryct88qf9ApcRfIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980029986</pqid></control><display><type>article</type><title>The Deep Underground Neutrino Experiment: The precision era of neutrino physics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kemp, E.</creator><creatorcontrib>Kemp, E. ; for the DUNE Collaboration ; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><description>The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known, and we have the elements to plan a judicious exploration of new scenarios that are opened by these recent advances. With precise measurements, we can test the three‐neutrino paradigm, neutrino mass hierarchy, and charge conjugation parity (CP) asymmetry in the lepton sector. The future long‐baseline experiments are considered to be a fundamental tool to deepen our knowledge of electroweak interactions. The Deep Underground Neutrino Experiment (DUNE) will detect a broadband neutrino beam from Fermilab in an underground massive liquid argon time‐projection chamber at an L/E of about 103 km GeV−1 to reach good sensitivity for CP‐phase measurements and the determination of the mass hierarchy. The dimensions and the depth of the far detector also create an excellent opportunity to look for rare signals like proton decay to study violation of the baryonic number, as well as supernova neutrino bursts, broadening the scope of the experiment to astrophysics and associated impacts in cosmology. In this paper, we discuss the physics motivations and the main experimental features of the DUNE project required to reach its scientific goals.</description><identifier>ISSN: 0004-6337</identifier><identifier>EISSN: 1521-3994</identifier><identifier>DOI: 10.1002/asna.201713417</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Astrophysics ; Baryons ; Broadband ; Conjugation ; Cosmology ; CP‐phase ; DUNE ; Electroweak interactions (field theory) ; Experiments ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Leptons ; neutrino ; Neutrinos ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Astronomische Nachrichten, 2017-12, Vol.338 (9-10), p.993-999</ispartof><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3847-b439de5433dd5fa140359333b1ef6e9e596232ca2de24dcce2f747494dc1bd3c3</citedby><cites>FETCH-LOGICAL-c3847-b439de5433dd5fa140359333b1ef6e9e596232ca2de24dcce2f747494dc1bd3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasna.201713417$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasna.201713417$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,1411,23910,23911,25119,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1423254$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kemp, E.</creatorcontrib><creatorcontrib>for the DUNE Collaboration</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><title>The Deep Underground Neutrino Experiment: The precision era of neutrino physics</title><title>Astronomische Nachrichten</title><description>The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known, and we have the elements to plan a judicious exploration of new scenarios that are opened by these recent advances. With precise measurements, we can test the three‐neutrino paradigm, neutrino mass hierarchy, and charge conjugation parity (CP) asymmetry in the lepton sector. The future long‐baseline experiments are considered to be a fundamental tool to deepen our knowledge of electroweak interactions. The Deep Underground Neutrino Experiment (DUNE) will detect a broadband neutrino beam from Fermilab in an underground massive liquid argon time‐projection chamber at an L/E of about 103 km GeV−1 to reach good sensitivity for CP‐phase measurements and the determination of the mass hierarchy. The dimensions and the depth of the far detector also create an excellent opportunity to look for rare signals like proton decay to study violation of the baryonic number, as well as supernova neutrino bursts, broadening the scope of the experiment to astrophysics and associated impacts in cosmology. In this paper, we discuss the physics motivations and the main experimental features of the DUNE project required to reach its scientific goals.</description><subject>Astrophysics</subject><subject>Baryons</subject><subject>Broadband</subject><subject>Conjugation</subject><subject>Cosmology</subject><subject>CP‐phase</subject><subject>DUNE</subject><subject>Electroweak interactions (field theory)</subject><subject>Experiments</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Leptons</subject><subject>neutrino</subject><subject>Neutrinos</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>0004-6337</issn><issn>1521-3994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqVw5WzBOcWvJDW3CspDqtoD7dlK7Q11VexgJ4L-e1yFx5HT7krfjGYHoUtKRpQQdlNFV40YoSXlgpZHaEBzRjMupThGA0KIyArOy1N0FuM2nbJgdIAWyw3ge4AGr5yB8Bp85wyeQ9cG6zyefjYQ7Bu49hYfyCaAttF6hyFU2NfY_ZDNZh-tjufopK52ES6-5xCtHqbLu6dstnh8vpvMMs3HoszWgksDueDcmLyuqCA8l5zzNYW6AAl5SseZrpgBJozWwOpSlEKmna4N13yIrnpfH1urorYt6I32zoFuFRVJnMyH6LqHmuDfO4it2vouuJRLUTlOnUk5LhI16ikdfIwBatWkl6uwV5SoQ7Pq0Kz6bTYJZC_4sDvY_0Oryct88qf9ApcRfIg</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Kemp, E.</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201712</creationdate><title>The Deep Underground Neutrino Experiment: The precision era of neutrino physics</title><author>Kemp, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3847-b439de5433dd5fa140359333b1ef6e9e596232ca2de24dcce2f747494dc1bd3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>Baryons</topic><topic>Broadband</topic><topic>Conjugation</topic><topic>Cosmology</topic><topic>CP‐phase</topic><topic>DUNE</topic><topic>Electroweak interactions (field theory)</topic><topic>Experiments</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Leptons</topic><topic>neutrino</topic><topic>Neutrinos</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kemp, E.</creatorcontrib><creatorcontrib>for the DUNE Collaboration</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Astronomische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kemp, E.</au><aucorp>for the DUNE Collaboration</aucorp><aucorp>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Deep Underground Neutrino Experiment: The precision era of neutrino physics</atitle><jtitle>Astronomische Nachrichten</jtitle><date>2017-12</date><risdate>2017</risdate><volume>338</volume><issue>9-10</issue><spage>993</spage><epage>999</epage><pages>993-999</pages><issn>0004-6337</issn><eissn>1521-3994</eissn><abstract>The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known, and we have the elements to plan a judicious exploration of new scenarios that are opened by these recent advances. With precise measurements, we can test the three‐neutrino paradigm, neutrino mass hierarchy, and charge conjugation parity (CP) asymmetry in the lepton sector. The future long‐baseline experiments are considered to be a fundamental tool to deepen our knowledge of electroweak interactions. The Deep Underground Neutrino Experiment (DUNE) will detect a broadband neutrino beam from Fermilab in an underground massive liquid argon time‐projection chamber at an L/E of about 103 km GeV−1 to reach good sensitivity for CP‐phase measurements and the determination of the mass hierarchy. The dimensions and the depth of the far detector also create an excellent opportunity to look for rare signals like proton decay to study violation of the baryonic number, as well as supernova neutrino bursts, broadening the scope of the experiment to astrophysics and associated impacts in cosmology. In this paper, we discuss the physics motivations and the main experimental features of the DUNE project required to reach its scientific goals.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/asna.201713417</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6337
ispartof Astronomische Nachrichten, 2017-12, Vol.338 (9-10), p.993-999
issn 0004-6337
1521-3994
language eng
recordid cdi_osti_scitechconnect_1423254
source Wiley Online Library Journals Frontfile Complete
subjects Astrophysics
Baryons
Broadband
Conjugation
Cosmology
CP‐phase
DUNE
Electroweak interactions (field theory)
Experiments
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Leptons
neutrino
Neutrinos
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
title The Deep Underground Neutrino Experiment: The precision era of neutrino physics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Deep%20Underground%20Neutrino%20Experiment:%20The%20precision%20era%20of%20neutrino%20physics&rft.jtitle=Astronomische%20Nachrichten&rft.au=Kemp,%20E.&rft.aucorp=for%20the%20DUNE%20Collaboration&rft.date=2017-12&rft.volume=338&rft.issue=9-10&rft.spage=993&rft.epage=999&rft.pages=993-999&rft.issn=0004-6337&rft.eissn=1521-3994&rft_id=info:doi/10.1002/asna.201713417&rft_dat=%3Cproquest_osti_%3E1980029986%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980029986&rft_id=info:pmid/&rfr_iscdi=true