Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

•Calibration method to match water stratification.•Couple a detailed vapor compression system model with a stratified water tank.•Simulate varied condenser heat distribution to water nodes. Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they req...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of refrigeration 2018-03, Vol.87, p.78-90
Hauptverfasser: Shen, Bo, Nawaz, Kashif, Baxter, Van, Elatar, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue
container_start_page 78
container_title International journal of refrigeration
container_volume 87
creator Shen, Bo
Nawaz, Kashif
Baxter, Van
Elatar, Ahmed
description •Calibration method to match water stratification.•Couple a detailed vapor compression system model with a stratified water tank.•Simulate varied condenser heat distribution to water nodes. Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus water tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. The HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.
doi_str_mv 10.1016/j.ijrefrig.2017.10.023
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1423094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140700717304243</els_id><sourcerecordid>S0140700717304243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e424b1d3d74f5e4ebf2f91fe9fd549707353143cf4e59b5109fce3e5066fdad83</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCsjinmDHTpPcQOVXQuIC58i1161D4gTbbdUH4L1x2nLmNNrR7Kz9IXRNSUoJnd02qWkcaGeWaUZoEc2UZOwETWhZVElGSnqKJoRykhSEFOfowvuGxCDJywn6eYANtP3QgQ1YWIU3ojVKBNNb3Gv8vRbeJD6AULsoIgBegQh4WHcD3sbR7ecoXa-gxSuxMXaJfXCxQhtQx1AQ9mtfv3ViGEAle0P2VoH14C7RmRath6ujTtHn0-PH_CV5e39-nd-_JZKVRUiAZ3xBFVMF1zlwWOhMV1RDpVXOq4IULGeUM6k55NUip6TSEhjkZDbTSqiSTdHNobf3wdRemgByFV9hQYaa8oyRisfQ7BCSrvc-kq0HZzrhdjUl9Ui8buo_4vVIfPQj8bh4d1iE-IWNATdeACtBGTceUL35r-IXC22Q7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shen, Bo ; Nawaz, Kashif ; Baxter, Van ; Elatar, Ahmed</creator><creatorcontrib>Shen, Bo ; Nawaz, Kashif ; Baxter, Van ; Elatar, Ahmed ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>•Calibration method to match water stratification.•Couple a detailed vapor compression system model with a stratified water tank.•Simulate varied condenser heat distribution to water nodes. Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus water tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. The HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.</description><identifier>ISSN: 0140-7007</identifier><identifier>EISSN: 1879-2081</identifier><identifier>DOI: 10.1016/j.ijrefrig.2017.10.023</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Chauffe-eau à pompe à chaleur ; Condenseur enveloppant la cuve ; Energy factor ; ENGINEERING ; Facteur énergétique ; Heat pump water heater ; Modeling ; Modélisation ; Réservoir d'eau stratifié ; Stratified water tank ; Wrap-tank condenser coil</subject><ispartof>International journal of refrigeration, 2018-03, Vol.87, p.78-90</ispartof><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e424b1d3d74f5e4ebf2f91fe9fd549707353143cf4e59b5109fce3e5066fdad83</citedby><cites>FETCH-LOGICAL-c387t-e424b1d3d74f5e4ebf2f91fe9fd549707353143cf4e59b5109fce3e5066fdad83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0140700717304243$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1423094$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Bo</creatorcontrib><creatorcontrib>Nawaz, Kashif</creatorcontrib><creatorcontrib>Baxter, Van</creatorcontrib><creatorcontrib>Elatar, Ahmed</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser</title><title>International journal of refrigeration</title><description>•Calibration method to match water stratification.•Couple a detailed vapor compression system model with a stratified water tank.•Simulate varied condenser heat distribution to water nodes. Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus water tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. The HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.</description><subject>Chauffe-eau à pompe à chaleur</subject><subject>Condenseur enveloppant la cuve</subject><subject>Energy factor</subject><subject>ENGINEERING</subject><subject>Facteur énergétique</subject><subject>Heat pump water heater</subject><subject>Modeling</subject><subject>Modélisation</subject><subject>Réservoir d'eau stratifié</subject><subject>Stratified water tank</subject><subject>Wrap-tank condenser coil</subject><issn>0140-7007</issn><issn>1879-2081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCsjinmDHTpPcQOVXQuIC58i1161D4gTbbdUH4L1x2nLmNNrR7Kz9IXRNSUoJnd02qWkcaGeWaUZoEc2UZOwETWhZVElGSnqKJoRykhSEFOfowvuGxCDJywn6eYANtP3QgQ1YWIU3ojVKBNNb3Gv8vRbeJD6AULsoIgBegQh4WHcD3sbR7ecoXa-gxSuxMXaJfXCxQhtQx1AQ9mtfv3ViGEAle0P2VoH14C7RmRath6ujTtHn0-PH_CV5e39-nd-_JZKVRUiAZ3xBFVMF1zlwWOhMV1RDpVXOq4IULGeUM6k55NUip6TSEhjkZDbTSqiSTdHNobf3wdRemgByFV9hQYaa8oyRisfQ7BCSrvc-kq0HZzrhdjUl9Ui8buo_4vVIfPQj8bh4d1iE-IWNATdeACtBGTceUL35r-IXC22Q7Q</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Shen, Bo</creator><creator>Nawaz, Kashif</creator><creator>Baxter, Van</creator><creator>Elatar, Ahmed</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180301</creationdate><title>Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser</title><author>Shen, Bo ; Nawaz, Kashif ; Baxter, Van ; Elatar, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e424b1d3d74f5e4ebf2f91fe9fd549707353143cf4e59b5109fce3e5066fdad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chauffe-eau à pompe à chaleur</topic><topic>Condenseur enveloppant la cuve</topic><topic>Energy factor</topic><topic>ENGINEERING</topic><topic>Facteur énergétique</topic><topic>Heat pump water heater</topic><topic>Modeling</topic><topic>Modélisation</topic><topic>Réservoir d'eau stratifié</topic><topic>Stratified water tank</topic><topic>Wrap-tank condenser coil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Bo</creatorcontrib><creatorcontrib>Nawaz, Kashif</creatorcontrib><creatorcontrib>Baxter, Van</creatorcontrib><creatorcontrib>Elatar, Ahmed</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of refrigeration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Bo</au><au>Nawaz, Kashif</au><au>Baxter, Van</au><au>Elatar, Ahmed</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser</atitle><jtitle>International journal of refrigeration</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>87</volume><spage>78</spage><epage>90</epage><pages>78-90</pages><issn>0140-7007</issn><eissn>1879-2081</eissn><abstract>•Calibration method to match water stratification.•Couple a detailed vapor compression system model with a stratified water tank.•Simulate varied condenser heat distribution to water nodes. Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus water tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. The HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrefrig.2017.10.023</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7007
ispartof International journal of refrigeration, 2018-03, Vol.87, p.78-90
issn 0140-7007
1879-2081
language eng
recordid cdi_osti_scitechconnect_1423094
source Elsevier ScienceDirect Journals Complete
subjects Chauffe-eau à pompe à chaleur
Condenseur enveloppant la cuve
Energy factor
ENGINEERING
Facteur énergétique
Heat pump water heater
Modeling
Modélisation
Réservoir d'eau stratifié
Stratified water tank
Wrap-tank condenser coil
title Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20validation%20of%20quasi-steady-state%20heat%20pump%20water%20heater%20model%20having%20stratified%20water%20tank%20and%20wrapped-tank%20condenser&rft.jtitle=International%20journal%20of%20refrigeration&rft.au=Shen,%20Bo&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-03-01&rft.volume=87&rft.spage=78&rft.epage=90&rft.pages=78-90&rft.issn=0140-7007&rft.eissn=1879-2081&rft_id=info:doi/10.1016/j.ijrefrig.2017.10.023&rft_dat=%3Celsevier_osti_%3ES0140700717304243%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0140700717304243&rfr_iscdi=true