Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser
•Calibration method to match water stratification.•Couple a detailed vapor compression system model with a stratified water tank.•Simulate varied condenser heat distribution to water nodes. Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they req...
Gespeichert in:
Veröffentlicht in: | International journal of refrigeration 2018-03, Vol.87, p.78-90 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | |
container_start_page | 78 |
container_title | International journal of refrigeration |
container_volume | 87 |
creator | Shen, Bo Nawaz, Kashif Baxter, Van Elatar, Ahmed |
description | •Calibration method to match water stratification.•Couple a detailed vapor compression system model with a stratified water tank.•Simulate varied condenser heat distribution to water nodes.
Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus water tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. The HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors. |
doi_str_mv | 10.1016/j.ijrefrig.2017.10.023 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1423094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140700717304243</els_id><sourcerecordid>S0140700717304243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e424b1d3d74f5e4ebf2f91fe9fd549707353143cf4e59b5109fce3e5066fdad83</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCsjinmDHTpPcQOVXQuIC58i1161D4gTbbdUH4L1x2nLmNNrR7Kz9IXRNSUoJnd02qWkcaGeWaUZoEc2UZOwETWhZVElGSnqKJoRykhSEFOfowvuGxCDJywn6eYANtP3QgQ1YWIU3ojVKBNNb3Gv8vRbeJD6AULsoIgBegQh4WHcD3sbR7ecoXa-gxSuxMXaJfXCxQhtQx1AQ9mtfv3ViGEAle0P2VoH14C7RmRath6ujTtHn0-PH_CV5e39-nd-_JZKVRUiAZ3xBFVMF1zlwWOhMV1RDpVXOq4IULGeUM6k55NUip6TSEhjkZDbTSqiSTdHNobf3wdRemgByFV9hQYaa8oyRisfQ7BCSrvc-kq0HZzrhdjUl9Ui8buo_4vVIfPQj8bh4d1iE-IWNATdeACtBGTceUL35r-IXC22Q7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shen, Bo ; Nawaz, Kashif ; Baxter, Van ; Elatar, Ahmed</creator><creatorcontrib>Shen, Bo ; Nawaz, Kashif ; Baxter, Van ; Elatar, Ahmed ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>•Calibration method to match water stratification.•Couple a detailed vapor compression system model with a stratified water tank.•Simulate varied condenser heat distribution to water nodes.
Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus water tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. The HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.</description><identifier>ISSN: 0140-7007</identifier><identifier>EISSN: 1879-2081</identifier><identifier>DOI: 10.1016/j.ijrefrig.2017.10.023</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Chauffe-eau à pompe à chaleur ; Condenseur enveloppant la cuve ; Energy factor ; ENGINEERING ; Facteur énergétique ; Heat pump water heater ; Modeling ; Modélisation ; Réservoir d'eau stratifié ; Stratified water tank ; Wrap-tank condenser coil</subject><ispartof>International journal of refrigeration, 2018-03, Vol.87, p.78-90</ispartof><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e424b1d3d74f5e4ebf2f91fe9fd549707353143cf4e59b5109fce3e5066fdad83</citedby><cites>FETCH-LOGICAL-c387t-e424b1d3d74f5e4ebf2f91fe9fd549707353143cf4e59b5109fce3e5066fdad83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0140700717304243$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1423094$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Bo</creatorcontrib><creatorcontrib>Nawaz, Kashif</creatorcontrib><creatorcontrib>Baxter, Van</creatorcontrib><creatorcontrib>Elatar, Ahmed</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser</title><title>International journal of refrigeration</title><description>•Calibration method to match water stratification.•Couple a detailed vapor compression system model with a stratified water tank.•Simulate varied condenser heat distribution to water nodes.
Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus water tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. The HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.</description><subject>Chauffe-eau à pompe à chaleur</subject><subject>Condenseur enveloppant la cuve</subject><subject>Energy factor</subject><subject>ENGINEERING</subject><subject>Facteur énergétique</subject><subject>Heat pump water heater</subject><subject>Modeling</subject><subject>Modélisation</subject><subject>Réservoir d'eau stratifié</subject><subject>Stratified water tank</subject><subject>Wrap-tank condenser coil</subject><issn>0140-7007</issn><issn>1879-2081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCsjinmDHTpPcQOVXQuIC58i1161D4gTbbdUH4L1x2nLmNNrR7Kz9IXRNSUoJnd02qWkcaGeWaUZoEc2UZOwETWhZVElGSnqKJoRykhSEFOfowvuGxCDJywn6eYANtP3QgQ1YWIU3ojVKBNNb3Gv8vRbeJD6AULsoIgBegQh4WHcD3sbR7ecoXa-gxSuxMXaJfXCxQhtQx1AQ9mtfv3ViGEAle0P2VoH14C7RmRath6ujTtHn0-PH_CV5e39-nd-_JZKVRUiAZ3xBFVMF1zlwWOhMV1RDpVXOq4IULGeUM6k55NUip6TSEhjkZDbTSqiSTdHNobf3wdRemgByFV9hQYaa8oyRisfQ7BCSrvc-kq0HZzrhdjUl9Ui8buo_4vVIfPQj8bh4d1iE-IWNATdeACtBGTceUL35r-IXC22Q7Q</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Shen, Bo</creator><creator>Nawaz, Kashif</creator><creator>Baxter, Van</creator><creator>Elatar, Ahmed</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180301</creationdate><title>Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser</title><author>Shen, Bo ; Nawaz, Kashif ; Baxter, Van ; Elatar, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e424b1d3d74f5e4ebf2f91fe9fd549707353143cf4e59b5109fce3e5066fdad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chauffe-eau à pompe à chaleur</topic><topic>Condenseur enveloppant la cuve</topic><topic>Energy factor</topic><topic>ENGINEERING</topic><topic>Facteur énergétique</topic><topic>Heat pump water heater</topic><topic>Modeling</topic><topic>Modélisation</topic><topic>Réservoir d'eau stratifié</topic><topic>Stratified water tank</topic><topic>Wrap-tank condenser coil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Bo</creatorcontrib><creatorcontrib>Nawaz, Kashif</creatorcontrib><creatorcontrib>Baxter, Van</creatorcontrib><creatorcontrib>Elatar, Ahmed</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of refrigeration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Bo</au><au>Nawaz, Kashif</au><au>Baxter, Van</au><au>Elatar, Ahmed</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser</atitle><jtitle>International journal of refrigeration</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>87</volume><spage>78</spage><epage>90</epage><pages>78-90</pages><issn>0140-7007</issn><eissn>1879-2081</eissn><abstract>•Calibration method to match water stratification.•Couple a detailed vapor compression system model with a stratified water tank.•Simulate varied condenser heat distribution to water nodes.
Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus water tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. The HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrefrig.2017.10.023</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7007 |
ispartof | International journal of refrigeration, 2018-03, Vol.87, p.78-90 |
issn | 0140-7007 1879-2081 |
language | eng |
recordid | cdi_osti_scitechconnect_1423094 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Chauffe-eau à pompe à chaleur Condenseur enveloppant la cuve Energy factor ENGINEERING Facteur énergétique Heat pump water heater Modeling Modélisation Réservoir d'eau stratifié Stratified water tank Wrap-tank condenser coil |
title | Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20validation%20of%20quasi-steady-state%20heat%20pump%20water%20heater%20model%20having%20stratified%20water%20tank%20and%20wrapped-tank%20condenser&rft.jtitle=International%20journal%20of%20refrigeration&rft.au=Shen,%20Bo&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-03-01&rft.volume=87&rft.spage=78&rft.epage=90&rft.pages=78-90&rft.issn=0140-7007&rft.eissn=1879-2081&rft_id=info:doi/10.1016/j.ijrefrig.2017.10.023&rft_dat=%3Celsevier_osti_%3ES0140700717304243%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0140700717304243&rfr_iscdi=true |