Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds

Preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-03, Vol.140 (9), p.3385-3393
Hauptverfasser: Lygo, Alexander C, Hamann, Danielle M, Moore, Daniel B, Merrill, Devin R, Ditto, Jeffrey, Esters, Marco, Orlowicz, Jacob, Wood, Suzannah R, Johnson, David C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3393
container_issue 9
container_start_page 3385
container_title Journal of the American Chemical Society
container_volume 140
creator Lygo, Alexander C
Hamann, Danielle M
Moore, Daniel B
Merrill, Devin R
Ditto, Jeffrey
Esters, Marco
Orlowicz, Jacob
Wood, Suzannah R
Johnson, David C
description Preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically, synthesis approaches are typically limited to forming only the most thermodynamically stable compound under the reaction conditions. Presented here is the synthesis, via self-assembly of designed precursors, of isocompositional incommensurate layered compounds [(BiSe)1+δ] m [TiSe2] m with m = 1, 2, and 3. The structure of the BiSe bilayer in the m = 1 compound is not that of the binary compound, and this is the first example of compounds where a BiSe layer thicker than a bilayer in heterostructures has been prepared. Specular and in-plane X-ray diffraction combined with high-resolution electron microscopy data was used to follow the formation of the compounds during low-temperature annealing and the subsequent decomposition of the m = 2 and 3 compounds into [(BiSe)1+δ]1[TiSe2]1 at elevated temperatures. These results show that the structure of the precursor can be used to control reaction kinetics, enabling the synthesis of kinetically stable compounds that are not accessible via traditional techniques. The data collected as a function of temperature and time enabled us to schematically construct the topology of the free energy landscape about the local free energy minima for each of the products.
doi_str_mv 10.1021/jacs.7b13398
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1422968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001922511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3048-adf1b341de92c6eaadfa20d387130bae2fd2d2c5c6fd2fcce9f3a87cf5b2a94c3</originalsourceid><addsrcrecordid>eNptkE1P3DAQhq0KVBbojXMVcQJBwB4n2eTYLl9VQRxKT6iynPFE9Sqxl9g58L_4Hf1NTdilvXDyvNYz70gPYweCnwkO4nypMZzNayFlVX5gM5EDT3MBxRabcc4hnZeF3GG7ISzHmEEpPrIdqDIJRQkzht-to2hRt-1zsvAu9r5tySRXvu90tN4l2pnkgtB3Kx_s649vkjuKOkRdt5Q8Hn21P-hYnPx5-ZV0yePDmGCaFtPK4EzYZ9uNbgN92rx77OfV5cPiJr29v_62-HKbasmzMtWmEbXMhKEKsCA9Zg3cyHIuJK81QWPAAOZYjEODSFUjdTnHJq9BVxnKPXa47vUhWhXQRsLf6J0jjEpkAFVRjtDRGlr1_mmgEFVnA1Lbakd-CAo4FxVALsSInq5R7H0IPTVq1dtO989KcDW5V5N7tXE_4p83zUPdkfkHv8n-f3raWvqhd6ON97v-Ap6WjfM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001922511</pqid></control><display><type>article</type><title>Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds</title><source>ACS Publications</source><creator>Lygo, Alexander C ; Hamann, Danielle M ; Moore, Daniel B ; Merrill, Devin R ; Ditto, Jeffrey ; Esters, Marco ; Orlowicz, Jacob ; Wood, Suzannah R ; Johnson, David C</creator><creatorcontrib>Lygo, Alexander C ; Hamann, Danielle M ; Moore, Daniel B ; Merrill, Devin R ; Ditto, Jeffrey ; Esters, Marco ; Orlowicz, Jacob ; Wood, Suzannah R ; Johnson, David C ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically, synthesis approaches are typically limited to forming only the most thermodynamically stable compound under the reaction conditions. Presented here is the synthesis, via self-assembly of designed precursors, of isocompositional incommensurate layered compounds [(BiSe)1+δ] m [TiSe2] m with m = 1, 2, and 3. The structure of the BiSe bilayer in the m = 1 compound is not that of the binary compound, and this is the first example of compounds where a BiSe layer thicker than a bilayer in heterostructures has been prepared. Specular and in-plane X-ray diffraction combined with high-resolution electron microscopy data was used to follow the formation of the compounds during low-temperature annealing and the subsequent decomposition of the m = 2 and 3 compounds into [(BiSe)1+δ]1[TiSe2]1 at elevated temperatures. These results show that the structure of the precursor can be used to control reaction kinetics, enabling the synthesis of kinetically stable compounds that are not accessible via traditional techniques. The data collected as a function of temperature and time enabled us to schematically construct the topology of the free energy landscape about the local free energy minima for each of the products.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b13398</identifier><identifier>PMID: 29432682</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>heterostructure ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; kinetic product ; materials chemistry ; MATERIALS SCIENCE ; solid state chemistry</subject><ispartof>Journal of the American Chemical Society, 2018-03, Vol.140 (9), p.3385-3393</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3048-adf1b341de92c6eaadfa20d387130bae2fd2d2c5c6fd2fcce9f3a87cf5b2a94c3</citedby><cites>FETCH-LOGICAL-a3048-adf1b341de92c6eaadfa20d387130bae2fd2d2c5c6fd2fcce9f3a87cf5b2a94c3</cites><orcidid>0000-0002-1118-0997 ; 0000-0002-7208-7681 ; 0000-0002-8793-2200 ; 0000-0003-1762-244X ; 0000-0002-9262-1060 ; 0000000292621060 ; 0000000287932200 ; 0000000211180997 ; 0000000272087681 ; 000000031762244X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b13398$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b13398$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29432682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1422968$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lygo, Alexander C</creatorcontrib><creatorcontrib>Hamann, Danielle M</creatorcontrib><creatorcontrib>Moore, Daniel B</creatorcontrib><creatorcontrib>Merrill, Devin R</creatorcontrib><creatorcontrib>Ditto, Jeffrey</creatorcontrib><creatorcontrib>Esters, Marco</creatorcontrib><creatorcontrib>Orlowicz, Jacob</creatorcontrib><creatorcontrib>Wood, Suzannah R</creatorcontrib><creatorcontrib>Johnson, David C</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically, synthesis approaches are typically limited to forming only the most thermodynamically stable compound under the reaction conditions. Presented here is the synthesis, via self-assembly of designed precursors, of isocompositional incommensurate layered compounds [(BiSe)1+δ] m [TiSe2] m with m = 1, 2, and 3. The structure of the BiSe bilayer in the m = 1 compound is not that of the binary compound, and this is the first example of compounds where a BiSe layer thicker than a bilayer in heterostructures has been prepared. Specular and in-plane X-ray diffraction combined with high-resolution electron microscopy data was used to follow the formation of the compounds during low-temperature annealing and the subsequent decomposition of the m = 2 and 3 compounds into [(BiSe)1+δ]1[TiSe2]1 at elevated temperatures. These results show that the structure of the precursor can be used to control reaction kinetics, enabling the synthesis of kinetically stable compounds that are not accessible via traditional techniques. The data collected as a function of temperature and time enabled us to schematically construct the topology of the free energy landscape about the local free energy minima for each of the products.</description><subject>heterostructure</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>kinetic product</subject><subject>materials chemistry</subject><subject>MATERIALS SCIENCE</subject><subject>solid state chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkE1P3DAQhq0KVBbojXMVcQJBwB4n2eTYLl9VQRxKT6iynPFE9Sqxl9g58L_4Hf1NTdilvXDyvNYz70gPYweCnwkO4nypMZzNayFlVX5gM5EDT3MBxRabcc4hnZeF3GG7ISzHmEEpPrIdqDIJRQkzht-to2hRt-1zsvAu9r5tySRXvu90tN4l2pnkgtB3Kx_s649vkjuKOkRdt5Q8Hn21P-hYnPx5-ZV0yePDmGCaFtPK4EzYZ9uNbgN92rx77OfV5cPiJr29v_62-HKbasmzMtWmEbXMhKEKsCA9Zg3cyHIuJK81QWPAAOZYjEODSFUjdTnHJq9BVxnKPXa47vUhWhXQRsLf6J0jjEpkAFVRjtDRGlr1_mmgEFVnA1Lbakd-CAo4FxVALsSInq5R7H0IPTVq1dtO989KcDW5V5N7tXE_4p83zUPdkfkHv8n-f3raWvqhd6ON97v-Ap6WjfM</recordid><startdate>20180307</startdate><enddate>20180307</enddate><creator>Lygo, Alexander C</creator><creator>Hamann, Danielle M</creator><creator>Moore, Daniel B</creator><creator>Merrill, Devin R</creator><creator>Ditto, Jeffrey</creator><creator>Esters, Marco</creator><creator>Orlowicz, Jacob</creator><creator>Wood, Suzannah R</creator><creator>Johnson, David C</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1118-0997</orcidid><orcidid>https://orcid.org/0000-0002-7208-7681</orcidid><orcidid>https://orcid.org/0000-0002-8793-2200</orcidid><orcidid>https://orcid.org/0000-0003-1762-244X</orcidid><orcidid>https://orcid.org/0000-0002-9262-1060</orcidid><orcidid>https://orcid.org/0000000292621060</orcidid><orcidid>https://orcid.org/0000000287932200</orcidid><orcidid>https://orcid.org/0000000211180997</orcidid><orcidid>https://orcid.org/0000000272087681</orcidid><orcidid>https://orcid.org/000000031762244X</orcidid></search><sort><creationdate>20180307</creationdate><title>Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds</title><author>Lygo, Alexander C ; Hamann, Danielle M ; Moore, Daniel B ; Merrill, Devin R ; Ditto, Jeffrey ; Esters, Marco ; Orlowicz, Jacob ; Wood, Suzannah R ; Johnson, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3048-adf1b341de92c6eaadfa20d387130bae2fd2d2c5c6fd2fcce9f3a87cf5b2a94c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>heterostructure</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>kinetic product</topic><topic>materials chemistry</topic><topic>MATERIALS SCIENCE</topic><topic>solid state chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lygo, Alexander C</creatorcontrib><creatorcontrib>Hamann, Danielle M</creatorcontrib><creatorcontrib>Moore, Daniel B</creatorcontrib><creatorcontrib>Merrill, Devin R</creatorcontrib><creatorcontrib>Ditto, Jeffrey</creatorcontrib><creatorcontrib>Esters, Marco</creatorcontrib><creatorcontrib>Orlowicz, Jacob</creatorcontrib><creatorcontrib>Wood, Suzannah R</creatorcontrib><creatorcontrib>Johnson, David C</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lygo, Alexander C</au><au>Hamann, Danielle M</au><au>Moore, Daniel B</au><au>Merrill, Devin R</au><au>Ditto, Jeffrey</au><au>Esters, Marco</au><au>Orlowicz, Jacob</au><au>Wood, Suzannah R</au><au>Johnson, David C</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-03-07</date><risdate>2018</risdate><volume>140</volume><issue>9</issue><spage>3385</spage><epage>3393</epage><pages>3385-3393</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically, synthesis approaches are typically limited to forming only the most thermodynamically stable compound under the reaction conditions. Presented here is the synthesis, via self-assembly of designed precursors, of isocompositional incommensurate layered compounds [(BiSe)1+δ] m [TiSe2] m with m = 1, 2, and 3. The structure of the BiSe bilayer in the m = 1 compound is not that of the binary compound, and this is the first example of compounds where a BiSe layer thicker than a bilayer in heterostructures has been prepared. Specular and in-plane X-ray diffraction combined with high-resolution electron microscopy data was used to follow the formation of the compounds during low-temperature annealing and the subsequent decomposition of the m = 2 and 3 compounds into [(BiSe)1+δ]1[TiSe2]1 at elevated temperatures. These results show that the structure of the precursor can be used to control reaction kinetics, enabling the synthesis of kinetically stable compounds that are not accessible via traditional techniques. The data collected as a function of temperature and time enabled us to schematically construct the topology of the free energy landscape about the local free energy minima for each of the products.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29432682</pmid><doi>10.1021/jacs.7b13398</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1118-0997</orcidid><orcidid>https://orcid.org/0000-0002-7208-7681</orcidid><orcidid>https://orcid.org/0000-0002-8793-2200</orcidid><orcidid>https://orcid.org/0000-0003-1762-244X</orcidid><orcidid>https://orcid.org/0000-0002-9262-1060</orcidid><orcidid>https://orcid.org/0000000292621060</orcidid><orcidid>https://orcid.org/0000000287932200</orcidid><orcidid>https://orcid.org/0000000211180997</orcidid><orcidid>https://orcid.org/0000000272087681</orcidid><orcidid>https://orcid.org/000000031762244X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-03, Vol.140 (9), p.3385-3393
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1422968
source ACS Publications
subjects heterostructure
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
kinetic product
materials chemistry
MATERIALS SCIENCE
solid state chemistry
title Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetically%20Controlled%20Formation%20and%20Decomposition%20of%20Metastable%20%5B(BiSe)1+%CE%B4%5D%20m%20%5BTiSe2%5D%20m%20Compounds&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lygo,%20Alexander%20C&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2018-03-07&rft.volume=140&rft.issue=9&rft.spage=3385&rft.epage=3393&rft.pages=3385-3393&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b13398&rft_dat=%3Cproquest_osti_%3E2001922511%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001922511&rft_id=info:pmid/29432682&rfr_iscdi=true