Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds
Preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2018-03, Vol.140 (9), p.3385-3393 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3393 |
---|---|
container_issue | 9 |
container_start_page | 3385 |
container_title | Journal of the American Chemical Society |
container_volume | 140 |
creator | Lygo, Alexander C Hamann, Danielle M Moore, Daniel B Merrill, Devin R Ditto, Jeffrey Esters, Marco Orlowicz, Jacob Wood, Suzannah R Johnson, David C |
description | Preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically, synthesis approaches are typically limited to forming only the most thermodynamically stable compound under the reaction conditions. Presented here is the synthesis, via self-assembly of designed precursors, of isocompositional incommensurate layered compounds [(BiSe)1+δ] m [TiSe2] m with m = 1, 2, and 3. The structure of the BiSe bilayer in the m = 1 compound is not that of the binary compound, and this is the first example of compounds where a BiSe layer thicker than a bilayer in heterostructures has been prepared. Specular and in-plane X-ray diffraction combined with high-resolution electron microscopy data was used to follow the formation of the compounds during low-temperature annealing and the subsequent decomposition of the m = 2 and 3 compounds into [(BiSe)1+δ]1[TiSe2]1 at elevated temperatures. These results show that the structure of the precursor can be used to control reaction kinetics, enabling the synthesis of kinetically stable compounds that are not accessible via traditional techniques. The data collected as a function of temperature and time enabled us to schematically construct the topology of the free energy landscape about the local free energy minima for each of the products. |
doi_str_mv | 10.1021/jacs.7b13398 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1422968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001922511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3048-adf1b341de92c6eaadfa20d387130bae2fd2d2c5c6fd2fcce9f3a87cf5b2a94c3</originalsourceid><addsrcrecordid>eNptkE1P3DAQhq0KVBbojXMVcQJBwB4n2eTYLl9VQRxKT6iynPFE9Sqxl9g58L_4Hf1NTdilvXDyvNYz70gPYweCnwkO4nypMZzNayFlVX5gM5EDT3MBxRabcc4hnZeF3GG7ISzHmEEpPrIdqDIJRQkzht-to2hRt-1zsvAu9r5tySRXvu90tN4l2pnkgtB3Kx_s649vkjuKOkRdt5Q8Hn21P-hYnPx5-ZV0yePDmGCaFtPK4EzYZ9uNbgN92rx77OfV5cPiJr29v_62-HKbasmzMtWmEbXMhKEKsCA9Zg3cyHIuJK81QWPAAOZYjEODSFUjdTnHJq9BVxnKPXa47vUhWhXQRsLf6J0jjEpkAFVRjtDRGlr1_mmgEFVnA1Lbakd-CAo4FxVALsSInq5R7H0IPTVq1dtO989KcDW5V5N7tXE_4p83zUPdkfkHv8n-f3raWvqhd6ON97v-Ap6WjfM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001922511</pqid></control><display><type>article</type><title>Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds</title><source>ACS Publications</source><creator>Lygo, Alexander C ; Hamann, Danielle M ; Moore, Daniel B ; Merrill, Devin R ; Ditto, Jeffrey ; Esters, Marco ; Orlowicz, Jacob ; Wood, Suzannah R ; Johnson, David C</creator><creatorcontrib>Lygo, Alexander C ; Hamann, Danielle M ; Moore, Daniel B ; Merrill, Devin R ; Ditto, Jeffrey ; Esters, Marco ; Orlowicz, Jacob ; Wood, Suzannah R ; Johnson, David C ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically, synthesis approaches are typically limited to forming only the most thermodynamically stable compound under the reaction conditions. Presented here is the synthesis, via self-assembly of designed precursors, of isocompositional incommensurate layered compounds [(BiSe)1+δ] m [TiSe2] m with m = 1, 2, and 3. The structure of the BiSe bilayer in the m = 1 compound is not that of the binary compound, and this is the first example of compounds where a BiSe layer thicker than a bilayer in heterostructures has been prepared. Specular and in-plane X-ray diffraction combined with high-resolution electron microscopy data was used to follow the formation of the compounds during low-temperature annealing and the subsequent decomposition of the m = 2 and 3 compounds into [(BiSe)1+δ]1[TiSe2]1 at elevated temperatures. These results show that the structure of the precursor can be used to control reaction kinetics, enabling the synthesis of kinetically stable compounds that are not accessible via traditional techniques. The data collected as a function of temperature and time enabled us to schematically construct the topology of the free energy landscape about the local free energy minima for each of the products.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b13398</identifier><identifier>PMID: 29432682</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>heterostructure ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; kinetic product ; materials chemistry ; MATERIALS SCIENCE ; solid state chemistry</subject><ispartof>Journal of the American Chemical Society, 2018-03, Vol.140 (9), p.3385-3393</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3048-adf1b341de92c6eaadfa20d387130bae2fd2d2c5c6fd2fcce9f3a87cf5b2a94c3</citedby><cites>FETCH-LOGICAL-a3048-adf1b341de92c6eaadfa20d387130bae2fd2d2c5c6fd2fcce9f3a87cf5b2a94c3</cites><orcidid>0000-0002-1118-0997 ; 0000-0002-7208-7681 ; 0000-0002-8793-2200 ; 0000-0003-1762-244X ; 0000-0002-9262-1060 ; 0000000292621060 ; 0000000287932200 ; 0000000211180997 ; 0000000272087681 ; 000000031762244X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b13398$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b13398$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29432682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1422968$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lygo, Alexander C</creatorcontrib><creatorcontrib>Hamann, Danielle M</creatorcontrib><creatorcontrib>Moore, Daniel B</creatorcontrib><creatorcontrib>Merrill, Devin R</creatorcontrib><creatorcontrib>Ditto, Jeffrey</creatorcontrib><creatorcontrib>Esters, Marco</creatorcontrib><creatorcontrib>Orlowicz, Jacob</creatorcontrib><creatorcontrib>Wood, Suzannah R</creatorcontrib><creatorcontrib>Johnson, David C</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically, synthesis approaches are typically limited to forming only the most thermodynamically stable compound under the reaction conditions. Presented here is the synthesis, via self-assembly of designed precursors, of isocompositional incommensurate layered compounds [(BiSe)1+δ] m [TiSe2] m with m = 1, 2, and 3. The structure of the BiSe bilayer in the m = 1 compound is not that of the binary compound, and this is the first example of compounds where a BiSe layer thicker than a bilayer in heterostructures has been prepared. Specular and in-plane X-ray diffraction combined with high-resolution electron microscopy data was used to follow the formation of the compounds during low-temperature annealing and the subsequent decomposition of the m = 2 and 3 compounds into [(BiSe)1+δ]1[TiSe2]1 at elevated temperatures. These results show that the structure of the precursor can be used to control reaction kinetics, enabling the synthesis of kinetically stable compounds that are not accessible via traditional techniques. The data collected as a function of temperature and time enabled us to schematically construct the topology of the free energy landscape about the local free energy minima for each of the products.</description><subject>heterostructure</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>kinetic product</subject><subject>materials chemistry</subject><subject>MATERIALS SCIENCE</subject><subject>solid state chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkE1P3DAQhq0KVBbojXMVcQJBwB4n2eTYLl9VQRxKT6iynPFE9Sqxl9g58L_4Hf1NTdilvXDyvNYz70gPYweCnwkO4nypMZzNayFlVX5gM5EDT3MBxRabcc4hnZeF3GG7ISzHmEEpPrIdqDIJRQkzht-to2hRt-1zsvAu9r5tySRXvu90tN4l2pnkgtB3Kx_s649vkjuKOkRdt5Q8Hn21P-hYnPx5-ZV0yePDmGCaFtPK4EzYZ9uNbgN92rx77OfV5cPiJr29v_62-HKbasmzMtWmEbXMhKEKsCA9Zg3cyHIuJK81QWPAAOZYjEODSFUjdTnHJq9BVxnKPXa47vUhWhXQRsLf6J0jjEpkAFVRjtDRGlr1_mmgEFVnA1Lbakd-CAo4FxVALsSInq5R7H0IPTVq1dtO989KcDW5V5N7tXE_4p83zUPdkfkHv8n-f3raWvqhd6ON97v-Ap6WjfM</recordid><startdate>20180307</startdate><enddate>20180307</enddate><creator>Lygo, Alexander C</creator><creator>Hamann, Danielle M</creator><creator>Moore, Daniel B</creator><creator>Merrill, Devin R</creator><creator>Ditto, Jeffrey</creator><creator>Esters, Marco</creator><creator>Orlowicz, Jacob</creator><creator>Wood, Suzannah R</creator><creator>Johnson, David C</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1118-0997</orcidid><orcidid>https://orcid.org/0000-0002-7208-7681</orcidid><orcidid>https://orcid.org/0000-0002-8793-2200</orcidid><orcidid>https://orcid.org/0000-0003-1762-244X</orcidid><orcidid>https://orcid.org/0000-0002-9262-1060</orcidid><orcidid>https://orcid.org/0000000292621060</orcidid><orcidid>https://orcid.org/0000000287932200</orcidid><orcidid>https://orcid.org/0000000211180997</orcidid><orcidid>https://orcid.org/0000000272087681</orcidid><orcidid>https://orcid.org/000000031762244X</orcidid></search><sort><creationdate>20180307</creationdate><title>Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds</title><author>Lygo, Alexander C ; Hamann, Danielle M ; Moore, Daniel B ; Merrill, Devin R ; Ditto, Jeffrey ; Esters, Marco ; Orlowicz, Jacob ; Wood, Suzannah R ; Johnson, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3048-adf1b341de92c6eaadfa20d387130bae2fd2d2c5c6fd2fcce9f3a87cf5b2a94c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>heterostructure</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>kinetic product</topic><topic>materials chemistry</topic><topic>MATERIALS SCIENCE</topic><topic>solid state chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lygo, Alexander C</creatorcontrib><creatorcontrib>Hamann, Danielle M</creatorcontrib><creatorcontrib>Moore, Daniel B</creatorcontrib><creatorcontrib>Merrill, Devin R</creatorcontrib><creatorcontrib>Ditto, Jeffrey</creatorcontrib><creatorcontrib>Esters, Marco</creatorcontrib><creatorcontrib>Orlowicz, Jacob</creatorcontrib><creatorcontrib>Wood, Suzannah R</creatorcontrib><creatorcontrib>Johnson, David C</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lygo, Alexander C</au><au>Hamann, Danielle M</au><au>Moore, Daniel B</au><au>Merrill, Devin R</au><au>Ditto, Jeffrey</au><au>Esters, Marco</au><au>Orlowicz, Jacob</au><au>Wood, Suzannah R</au><au>Johnson, David C</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-03-07</date><risdate>2018</risdate><volume>140</volume><issue>9</issue><spage>3385</spage><epage>3393</epage><pages>3385-3393</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically, synthesis approaches are typically limited to forming only the most thermodynamically stable compound under the reaction conditions. Presented here is the synthesis, via self-assembly of designed precursors, of isocompositional incommensurate layered compounds [(BiSe)1+δ] m [TiSe2] m with m = 1, 2, and 3. The structure of the BiSe bilayer in the m = 1 compound is not that of the binary compound, and this is the first example of compounds where a BiSe layer thicker than a bilayer in heterostructures has been prepared. Specular and in-plane X-ray diffraction combined with high-resolution electron microscopy data was used to follow the formation of the compounds during low-temperature annealing and the subsequent decomposition of the m = 2 and 3 compounds into [(BiSe)1+δ]1[TiSe2]1 at elevated temperatures. These results show that the structure of the precursor can be used to control reaction kinetics, enabling the synthesis of kinetically stable compounds that are not accessible via traditional techniques. The data collected as a function of temperature and time enabled us to schematically construct the topology of the free energy landscape about the local free energy minima for each of the products.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29432682</pmid><doi>10.1021/jacs.7b13398</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1118-0997</orcidid><orcidid>https://orcid.org/0000-0002-7208-7681</orcidid><orcidid>https://orcid.org/0000-0002-8793-2200</orcidid><orcidid>https://orcid.org/0000-0003-1762-244X</orcidid><orcidid>https://orcid.org/0000-0002-9262-1060</orcidid><orcidid>https://orcid.org/0000000292621060</orcidid><orcidid>https://orcid.org/0000000287932200</orcidid><orcidid>https://orcid.org/0000000211180997</orcidid><orcidid>https://orcid.org/0000000272087681</orcidid><orcidid>https://orcid.org/000000031762244X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2018-03, Vol.140 (9), p.3385-3393 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1422968 |
source | ACS Publications |
subjects | heterostructure INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY kinetic product materials chemistry MATERIALS SCIENCE solid state chemistry |
title | Kinetically Controlled Formation and Decomposition of Metastable [(BiSe)1+δ] m [TiSe2] m Compounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetically%20Controlled%20Formation%20and%20Decomposition%20of%20Metastable%20%5B(BiSe)1+%CE%B4%5D%20m%20%5BTiSe2%5D%20m%20Compounds&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lygo,%20Alexander%20C&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2018-03-07&rft.volume=140&rft.issue=9&rft.spage=3385&rft.epage=3393&rft.pages=3385-3393&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b13398&rft_dat=%3Cproquest_osti_%3E2001922511%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001922511&rft_id=info:pmid/29432682&rfr_iscdi=true |