Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys.Rev.C 2018-01, Vol.97 (1), Article 012501
Hauptverfasser: Ito, T. M., Adamek, E. R., Callahan, N. B., Choi, J. H., Clayton, S. M., Cude-Woods, C., Currie, S., Ding, X., Fellers, D. E., Geltenbort, P., Lamoreaux, S. K., Liu, C.-Y., MacDonald, S., Makela, M., Morris, C. L., Pattie, R. W., Ramsey, J. C., Salvat, D. J., Saunders, A., Sharapov, E. I., Sjue, S., Sprow, A. P., Tang, Z., Weaver, H. L., Wei, W., Young, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Phys.Rev.C
container_volume 97
creator Ito, T. M.
Adamek, E. R.
Callahan, N. B.
Choi, J. H.
Clayton, S. M.
Cude-Woods, C.
Currie, S.
Ding, X.
Fellers, D. E.
Geltenbort, P.
Lamoreaux, S. K.
Liu, C.-Y.
MacDonald, S.
Makela, M.
Morris, C. L.
Pattie, R. W.
Ramsey, J. C.
Salvat, D. J.
Saunders, A.
Sharapov, E. I.
Sjue, S.
Sprow, A. P.
Tang, Z.
Weaver, H. L.
Wei, W.
Young, A. R.
description The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184(32) UCN/cm3, a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39(7) UCN/cm3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(dn)=3×10−27ecm.
doi_str_mv 10.1103/PhysRevC.97.012501
format Article
fullrecord <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1422926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01703829v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-94e33edb312d995bd81cf0f066e14ca443c35fe3fb155a505bd7e63e4cc64fdc3</originalsourceid><addsrcrecordid>eNo9kcFOGzEQhlcVlYqAF-hp1FsPCfbauxsfo6gFpBUg1J4trz0mRt71ynZQ8zy8KA4pOc3o1zf_zOivqu-ULCkl7Ppxu09P-LpZim5JaN0Q-qU6r3krFkIIdnbqV8236iqlF0IIbYnoKDmv3h4x2hBHNWmEYCFvEXbzc1QGDex8jkoHb2DCXY5hghR2sYAqQx8SrL0aS7lX2YVJeejVEKLKIe5BTQZcTuDG2Tv9AUDZAwrmkJIbPJ480aPO0Wkwbg5FH8OIUwb8N2N0h_ay-mqVT3j1v15Uf3__-rO5XfQPN3ebdb_QvO3yQnBkDM3AaG2EaAazotoSS9oWKdeKc6ZZY5HZgTaNakghOmwZcq1bbo1mF9WPo29I2cmkXUa91WGayn2S8roWdVugn0doq7ycy4Eq7mVQTt6ue3nQCO0IW9XilRa2PrI6lqcj2tMAJfIQnfyMTopOHqNj7yQ9kjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment</title><source>American Physical Society Journals</source><creator>Ito, T. M. ; Adamek, E. R. ; Callahan, N. B. ; Choi, J. H. ; Clayton, S. M. ; Cude-Woods, C. ; Currie, S. ; Ding, X. ; Fellers, D. E. ; Geltenbort, P. ; Lamoreaux, S. K. ; Liu, C.-Y. ; MacDonald, S. ; Makela, M. ; Morris, C. L. ; Pattie, R. W. ; Ramsey, J. C. ; Salvat, D. J. ; Saunders, A. ; Sharapov, E. I. ; Sjue, S. ; Sprow, A. P. ; Tang, Z. ; Weaver, H. L. ; Wei, W. ; Young, A. R.</creator><creatorcontrib>Ito, T. M. ; Adamek, E. R. ; Callahan, N. B. ; Choi, J. H. ; Clayton, S. M. ; Cude-Woods, C. ; Currie, S. ; Ding, X. ; Fellers, D. E. ; Geltenbort, P. ; Lamoreaux, S. K. ; Liu, C.-Y. ; MacDonald, S. ; Makela, M. ; Morris, C. L. ; Pattie, R. W. ; Ramsey, J. C. ; Salvat, D. J. ; Saunders, A. ; Sharapov, E. I. ; Sjue, S. ; Sprow, A. P. ; Tang, Z. ; Weaver, H. L. ; Wei, W. ; Young, A. R. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184(32) UCN/cm3, a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39(7) UCN/cm3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(dn)=3×10−27ecm.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.97.012501</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Accelerator Physics ; Atomic and Nuclear Physics ; Instrumentation and Detectors ; Nuclear Experiment ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Physics</subject><ispartof>Phys.Rev.C, 2018-01, Vol.97 (1), Article 012501</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-94e33edb312d995bd81cf0f066e14ca443c35fe3fb155a505bd7e63e4cc64fdc3</citedby><cites>FETCH-LOGICAL-c467t-94e33edb312d995bd81cf0f066e14ca443c35fe3fb155a505bd7e63e4cc64fdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01703829$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1422926$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, T. M.</creatorcontrib><creatorcontrib>Adamek, E. R.</creatorcontrib><creatorcontrib>Callahan, N. B.</creatorcontrib><creatorcontrib>Choi, J. H.</creatorcontrib><creatorcontrib>Clayton, S. M.</creatorcontrib><creatorcontrib>Cude-Woods, C.</creatorcontrib><creatorcontrib>Currie, S.</creatorcontrib><creatorcontrib>Ding, X.</creatorcontrib><creatorcontrib>Fellers, D. E.</creatorcontrib><creatorcontrib>Geltenbort, P.</creatorcontrib><creatorcontrib>Lamoreaux, S. K.</creatorcontrib><creatorcontrib>Liu, C.-Y.</creatorcontrib><creatorcontrib>MacDonald, S.</creatorcontrib><creatorcontrib>Makela, M.</creatorcontrib><creatorcontrib>Morris, C. L.</creatorcontrib><creatorcontrib>Pattie, R. W.</creatorcontrib><creatorcontrib>Ramsey, J. C.</creatorcontrib><creatorcontrib>Salvat, D. J.</creatorcontrib><creatorcontrib>Saunders, A.</creatorcontrib><creatorcontrib>Sharapov, E. I.</creatorcontrib><creatorcontrib>Sjue, S.</creatorcontrib><creatorcontrib>Sprow, A. P.</creatorcontrib><creatorcontrib>Tang, Z.</creatorcontrib><creatorcontrib>Weaver, H. L.</creatorcontrib><creatorcontrib>Wei, W.</creatorcontrib><creatorcontrib>Young, A. R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment</title><title>Phys.Rev.C</title><description>The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184(32) UCN/cm3, a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39(7) UCN/cm3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(dn)=3×10−27ecm.</description><subject>Accelerator Physics</subject><subject>Atomic and Nuclear Physics</subject><subject>Instrumentation and Detectors</subject><subject>Nuclear Experiment</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Physics</subject><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kcFOGzEQhlcVlYqAF-hp1FsPCfbauxsfo6gFpBUg1J4trz0mRt71ynZQ8zy8KA4pOc3o1zf_zOivqu-ULCkl7Ppxu09P-LpZim5JaN0Q-qU6r3krFkIIdnbqV8236iqlF0IIbYnoKDmv3h4x2hBHNWmEYCFvEXbzc1QGDex8jkoHb2DCXY5hghR2sYAqQx8SrL0aS7lX2YVJeejVEKLKIe5BTQZcTuDG2Tv9AUDZAwrmkJIbPJ480aPO0Wkwbg5FH8OIUwb8N2N0h_ay-mqVT3j1v15Uf3__-rO5XfQPN3ebdb_QvO3yQnBkDM3AaG2EaAazotoSS9oWKdeKc6ZZY5HZgTaNakghOmwZcq1bbo1mF9WPo29I2cmkXUa91WGayn2S8roWdVugn0doq7ycy4Eq7mVQTt6ue3nQCO0IW9XilRa2PrI6lqcj2tMAJfIQnfyMTopOHqNj7yQ9kjQ</recordid><startdate>20180129</startdate><enddate>20180129</enddate><creator>Ito, T. M.</creator><creator>Adamek, E. R.</creator><creator>Callahan, N. B.</creator><creator>Choi, J. H.</creator><creator>Clayton, S. M.</creator><creator>Cude-Woods, C.</creator><creator>Currie, S.</creator><creator>Ding, X.</creator><creator>Fellers, D. E.</creator><creator>Geltenbort, P.</creator><creator>Lamoreaux, S. K.</creator><creator>Liu, C.-Y.</creator><creator>MacDonald, S.</creator><creator>Makela, M.</creator><creator>Morris, C. L.</creator><creator>Pattie, R. W.</creator><creator>Ramsey, J. C.</creator><creator>Salvat, D. J.</creator><creator>Saunders, A.</creator><creator>Sharapov, E. I.</creator><creator>Sjue, S.</creator><creator>Sprow, A. P.</creator><creator>Tang, Z.</creator><creator>Weaver, H. L.</creator><creator>Wei, W.</creator><creator>Young, A. R.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180129</creationdate><title>Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment</title><author>Ito, T. M. ; Adamek, E. R. ; Callahan, N. B. ; Choi, J. H. ; Clayton, S. M. ; Cude-Woods, C. ; Currie, S. ; Ding, X. ; Fellers, D. E. ; Geltenbort, P. ; Lamoreaux, S. K. ; Liu, C.-Y. ; MacDonald, S. ; Makela, M. ; Morris, C. L. ; Pattie, R. W. ; Ramsey, J. C. ; Salvat, D. J. ; Saunders, A. ; Sharapov, E. I. ; Sjue, S. ; Sprow, A. P. ; Tang, Z. ; Weaver, H. L. ; Wei, W. ; Young, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-94e33edb312d995bd81cf0f066e14ca443c35fe3fb155a505bd7e63e4cc64fdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accelerator Physics</topic><topic>Atomic and Nuclear Physics</topic><topic>Instrumentation and Detectors</topic><topic>Nuclear Experiment</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, T. M.</creatorcontrib><creatorcontrib>Adamek, E. R.</creatorcontrib><creatorcontrib>Callahan, N. B.</creatorcontrib><creatorcontrib>Choi, J. H.</creatorcontrib><creatorcontrib>Clayton, S. M.</creatorcontrib><creatorcontrib>Cude-Woods, C.</creatorcontrib><creatorcontrib>Currie, S.</creatorcontrib><creatorcontrib>Ding, X.</creatorcontrib><creatorcontrib>Fellers, D. E.</creatorcontrib><creatorcontrib>Geltenbort, P.</creatorcontrib><creatorcontrib>Lamoreaux, S. K.</creatorcontrib><creatorcontrib>Liu, C.-Y.</creatorcontrib><creatorcontrib>MacDonald, S.</creatorcontrib><creatorcontrib>Makela, M.</creatorcontrib><creatorcontrib>Morris, C. L.</creatorcontrib><creatorcontrib>Pattie, R. W.</creatorcontrib><creatorcontrib>Ramsey, J. C.</creatorcontrib><creatorcontrib>Salvat, D. J.</creatorcontrib><creatorcontrib>Saunders, A.</creatorcontrib><creatorcontrib>Sharapov, E. I.</creatorcontrib><creatorcontrib>Sjue, S.</creatorcontrib><creatorcontrib>Sprow, A. P.</creatorcontrib><creatorcontrib>Tang, Z.</creatorcontrib><creatorcontrib>Weaver, H. L.</creatorcontrib><creatorcontrib>Wei, W.</creatorcontrib><creatorcontrib>Young, A. R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Phys.Rev.C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, T. M.</au><au>Adamek, E. R.</au><au>Callahan, N. B.</au><au>Choi, J. H.</au><au>Clayton, S. M.</au><au>Cude-Woods, C.</au><au>Currie, S.</au><au>Ding, X.</au><au>Fellers, D. E.</au><au>Geltenbort, P.</au><au>Lamoreaux, S. K.</au><au>Liu, C.-Y.</au><au>MacDonald, S.</au><au>Makela, M.</au><au>Morris, C. L.</au><au>Pattie, R. W.</au><au>Ramsey, J. C.</au><au>Salvat, D. J.</au><au>Saunders, A.</au><au>Sharapov, E. I.</au><au>Sjue, S.</au><au>Sprow, A. P.</au><au>Tang, Z.</au><au>Weaver, H. L.</au><au>Wei, W.</au><au>Young, A. R.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment</atitle><jtitle>Phys.Rev.C</jtitle><date>2018-01-29</date><risdate>2018</risdate><volume>97</volume><issue>1</issue><artnum>012501</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184(32) UCN/cm3, a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39(7) UCN/cm3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(dn)=3×10−27ecm.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevC.97.012501</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9985
ispartof Phys.Rev.C, 2018-01, Vol.97 (1), Article 012501
issn 2469-9985
2469-9993
language eng
recordid cdi_osti_scitechconnect_1422926
source American Physical Society Journals
subjects Accelerator Physics
Atomic and Nuclear Physics
Instrumentation and Detectors
Nuclear Experiment
NUCLEAR PHYSICS AND RADIATION PHYSICS
Physics
title Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20the%20upgraded%20ultracold%20neutron%20source%20at%20Los%20Alamos%20National%20Laboratory%20and%20its%20implication%20for%20a%20possible%20neutron%20electric%20dipole%20moment%20experiment&rft.jtitle=Phys.Rev.C&rft.au=Ito,%20T.%20M.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-01-29&rft.volume=97&rft.issue=1&rft.artnum=012501&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.97.012501&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_01703829v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true