Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN

Inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2017-12, Vol.122 (23)
Hauptverfasser: Collins, K. C., Armstrong, A. M., Allerman, A. A., Vizkelethy, G., Van Deusen, S. B., Léonard, F., Talin, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page
container_title Journal of applied physics
container_volume 122
creator Collins, K. C.
Armstrong, A. M.
Allerman, A. A.
Vizkelethy, G.
Van Deusen, S. B.
Léonard, F.
Talin, A. A.
description Inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 1013 protons/cm2. We also characterize the specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (VGa-related), carbon impurities (C-related), and gallium interstitials (Gai). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ∼500 nm, which suggests mobile Gai. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Gai.
doi_str_mv 10.1063/1.5006814
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1421641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116006832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-c19a5efe715b338e649c03786c59b26208a6a3b21e9de834c7c434d2cb8104ce3</originalsourceid><addsrcrecordid>eNp90c1LwzAUAPAgCs7pwf-g6EmhM6_pR3KUoVMY6kHPIU1Tl7ElNUnFXf3LbdehguApj_B7H7yH0CngCeCcXMEkwzinkO6hEWDK4iLL8D4aYZxATFnBDtGR90uMAShhI_T55GywJtLOiUqLoLtY1bWSwUdduNbGOh02kRTOaeWiStd163u1UuY1LCJhqqhSfUKkTXC2auW2iDbRwq6tanQQH1qstnChgnK__kw8Ew_H6KAWK69Odu8YvdzePE_v4vnj7H56PY8loSzEEpjIukYFZCUhVOUpk5gUNJcZK5M8wVTkgpQJKFYpSlJZyJSkVSJLCjiViozR2VDX-qC5lzoouZDWmG52DmkCeQodOh9Q4-xbq3zgS9s6083FE4C83y1JOnUxKOms907VvHF6LdyGA-b9HTjw3R06eznYvuN2wd_43bofyJuq_g__rfwFFHKYBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116006832</pqid></control><display><type>article</type><title>Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Collins, K. C. ; Armstrong, A. M. ; Allerman, A. A. ; Vizkelethy, G. ; Van Deusen, S. B. ; Léonard, F. ; Talin, A. A.</creator><creatorcontrib>Collins, K. C. ; Armstrong, A. M. ; Allerman, A. A. ; Vizkelethy, G. ; Van Deusen, S. B. ; Léonard, F. ; Talin, A. A. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 1013 protons/cm2. We also characterize the specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (VGa-related), carbon impurities (C-related), and gallium interstitials (Gai). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ∼500 nm, which suggests mobile Gai. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Gai.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5006814</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carrier transport ; Cathodoluminescence ; Clustering ; Conduction bands ; Diffusion effects ; Diffusion length ; Dislocation density ; Electron beam induced current ; Electronic devices ; Energy levels ; Gallium nitrides ; Interstitials ; Migration ; Minority carriers ; Photocapacitance ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Point defects ; Proton irradiation ; Radiation effects ; Schottky diodes ; Substrates ; Threading dislocations</subject><ispartof>Journal of applied physics, 2017-12, Vol.122 (23)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-c19a5efe715b338e649c03786c59b26208a6a3b21e9de834c7c434d2cb8104ce3</citedby><cites>FETCH-LOGICAL-c389t-c19a5efe715b338e649c03786c59b26208a6a3b21e9de834c7c434d2cb8104ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5006814$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76131</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1421641$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Collins, K. C.</creatorcontrib><creatorcontrib>Armstrong, A. M.</creatorcontrib><creatorcontrib>Allerman, A. A.</creatorcontrib><creatorcontrib>Vizkelethy, G.</creatorcontrib><creatorcontrib>Van Deusen, S. B.</creatorcontrib><creatorcontrib>Léonard, F.</creatorcontrib><creatorcontrib>Talin, A. A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN</title><title>Journal of applied physics</title><description>Inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 1013 protons/cm2. We also characterize the specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (VGa-related), carbon impurities (C-related), and gallium interstitials (Gai). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ∼500 nm, which suggests mobile Gai. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Gai.</description><subject>Applied physics</subject><subject>Carrier transport</subject><subject>Cathodoluminescence</subject><subject>Clustering</subject><subject>Conduction bands</subject><subject>Diffusion effects</subject><subject>Diffusion length</subject><subject>Dislocation density</subject><subject>Electron beam induced current</subject><subject>Electronic devices</subject><subject>Energy levels</subject><subject>Gallium nitrides</subject><subject>Interstitials</subject><subject>Migration</subject><subject>Minority carriers</subject><subject>Photocapacitance</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Point defects</subject><subject>Proton irradiation</subject><subject>Radiation effects</subject><subject>Schottky diodes</subject><subject>Substrates</subject><subject>Threading dislocations</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90c1LwzAUAPAgCs7pwf-g6EmhM6_pR3KUoVMY6kHPIU1Tl7ElNUnFXf3LbdehguApj_B7H7yH0CngCeCcXMEkwzinkO6hEWDK4iLL8D4aYZxATFnBDtGR90uMAShhI_T55GywJtLOiUqLoLtY1bWSwUdduNbGOh02kRTOaeWiStd163u1UuY1LCJhqqhSfUKkTXC2auW2iDbRwq6tanQQH1qstnChgnK__kw8Ew_H6KAWK69Odu8YvdzePE_v4vnj7H56PY8loSzEEpjIukYFZCUhVOUpk5gUNJcZK5M8wVTkgpQJKFYpSlJZyJSkVSJLCjiViozR2VDX-qC5lzoouZDWmG52DmkCeQodOh9Q4-xbq3zgS9s6083FE4C83y1JOnUxKOms907VvHF6LdyGA-b9HTjw3R06eznYvuN2wd_43bofyJuq_g__rfwFFHKYBA</recordid><startdate>20171221</startdate><enddate>20171221</enddate><creator>Collins, K. C.</creator><creator>Armstrong, A. M.</creator><creator>Allerman, A. A.</creator><creator>Vizkelethy, G.</creator><creator>Van Deusen, S. B.</creator><creator>Léonard, F.</creator><creator>Talin, A. A.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20171221</creationdate><title>Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN</title><author>Collins, K. C. ; Armstrong, A. M. ; Allerman, A. A. ; Vizkelethy, G. ; Van Deusen, S. B. ; Léonard, F. ; Talin, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-c19a5efe715b338e649c03786c59b26208a6a3b21e9de834c7c434d2cb8104ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Carrier transport</topic><topic>Cathodoluminescence</topic><topic>Clustering</topic><topic>Conduction bands</topic><topic>Diffusion effects</topic><topic>Diffusion length</topic><topic>Dislocation density</topic><topic>Electron beam induced current</topic><topic>Electronic devices</topic><topic>Energy levels</topic><topic>Gallium nitrides</topic><topic>Interstitials</topic><topic>Migration</topic><topic>Minority carriers</topic><topic>Photocapacitance</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Point defects</topic><topic>Proton irradiation</topic><topic>Radiation effects</topic><topic>Schottky diodes</topic><topic>Substrates</topic><topic>Threading dislocations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, K. C.</creatorcontrib><creatorcontrib>Armstrong, A. M.</creatorcontrib><creatorcontrib>Allerman, A. A.</creatorcontrib><creatorcontrib>Vizkelethy, G.</creatorcontrib><creatorcontrib>Van Deusen, S. B.</creatorcontrib><creatorcontrib>Léonard, F.</creatorcontrib><creatorcontrib>Talin, A. A.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, K. C.</au><au>Armstrong, A. M.</au><au>Allerman, A. A.</au><au>Vizkelethy, G.</au><au>Van Deusen, S. B.</au><au>Léonard, F.</au><au>Talin, A. A.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN</atitle><jtitle>Journal of applied physics</jtitle><date>2017-12-21</date><risdate>2017</risdate><volume>122</volume><issue>23</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 1013 protons/cm2. We also characterize the specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (VGa-related), carbon impurities (C-related), and gallium interstitials (Gai). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ∼500 nm, which suggests mobile Gai. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Gai.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5006814</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2017-12, Vol.122 (23)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_1421641
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Carrier transport
Cathodoluminescence
Clustering
Conduction bands
Diffusion effects
Diffusion length
Dislocation density
Electron beam induced current
Electronic devices
Energy levels
Gallium nitrides
Interstitials
Migration
Minority carriers
Photocapacitance
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Point defects
Proton irradiation
Radiation effects
Schottky diodes
Substrates
Threading dislocations
title Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20irradiation%20effects%20on%20minority%20carrier%20diffusion%20length%20and%20defect%20introduction%20in%20homoepitaxial%20and%20heteroepitaxial%20n-GaN&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Collins,%20K.%20C.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2017-12-21&rft.volume=122&rft.issue=23&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5006814&rft_dat=%3Cproquest_osti_%3E2116006832%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116006832&rft_id=info:pmid/&rfr_iscdi=true