Water uptake profile in a model ion-exchange membrane: conditions for water-rich channels
Ionic conductivity in a polymeric fuel cell requires water uptake. Previous theoretical studies of water uptake used idealized parameters. We report a parameter-free prediction of the water-swelling behavior of a model fuel cell membrane. The model polymers, poly(methyl-butylene)-block-poly(vinylben...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2015-03, Vol.142 (11), p.114906-114906 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114906 |
---|---|
container_issue | 11 |
container_start_page | 114906 |
container_title | The Journal of chemical physics |
container_volume | 142 |
creator | Herbst, Daniel C Witten, Thomas A Tsai, Tsung-Han Bryan Coughlin, E Maes, Ashley M Herring, Andrew M |
description | Ionic conductivity in a polymeric fuel cell requires water uptake. Previous theoretical studies of water uptake used idealized parameters. We report a parameter-free prediction of the water-swelling behavior of a model fuel cell membrane. The model polymers, poly(methyl-butylene)-block-poly(vinylbenzyl-trimethylamine), form lamellar domains that absorb water in humid air. We use the Scheutjens-Fleer methodology to predict the resulting change in lamellar structure and compare with x-ray scattering. The results suggest locally uniform water distributions. However, under conditions where a PVBTMA and water mixture phase-separate, the two phases arrange into stripes with a dilute stripe sandwiched between two concentrated stripes. A small amount of water enhances conductivity most when it is partitioned into such channels, improving fuel-cell performance. |
doi_str_mv | 10.1063/1.4914512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1421250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1666293381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-d1419ad30c97aa84bb514a6d5e2caad228bf8ffc68490804d65047222021c93b3</originalsourceid><addsrcrecordid>eNpd0UFP2zAYBmBrYlpL2WF_AFnswg4p_hzHibmhCrZJlbiApp0sx_lC3SVxsRMx_j2u2nHYyQc_evW9egn5AmwJTOZXsBQKRAH8A5kDq1RWSsVOyJwxDpmSTM7IaYxbxhiUXHwiM16USnJZzMnvX2bEQKfdaP4g3QXfug6pG6ihvW-wo84PGf61GzM8Ie2xr4MZ8JpaPzRuTJ-Rtj7Ql31KFpzd0D0dsItn5GNruoifj--CPN7dPqx-ZOv77z9XN-vMCgFj1oAAZZqcWVUaU4m6LkAY2RTIrTEN51XdVm1rZSUUq5hoZMFEyTlP3azK63xBLg65Po5OR-tGtJt03oB21CA48IIldHlAqeHzhHHUvYsWuy6V8VPUIKXkKs8rSPTrf3TrpzCkCjpliUrlUOzVt4OywccYsNW74HoTXjUwvR9Fgz6Okuz5MXGqe2ze5b8V8jcEEYRp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124893151</pqid></control><display><type>article</type><title>Water uptake profile in a model ion-exchange membrane: conditions for water-rich channels</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Herbst, Daniel C ; Witten, Thomas A ; Tsai, Tsung-Han ; Bryan Coughlin, E ; Maes, Ashley M ; Herring, Andrew M</creator><creatorcontrib>Herbst, Daniel C ; Witten, Thomas A ; Tsai, Tsung-Han ; Bryan Coughlin, E ; Maes, Ashley M ; Herring, Andrew M</creatorcontrib><description>Ionic conductivity in a polymeric fuel cell requires water uptake. Previous theoretical studies of water uptake used idealized parameters. We report a parameter-free prediction of the water-swelling behavior of a model fuel cell membrane. The model polymers, poly(methyl-butylene)-block-poly(vinylbenzyl-trimethylamine), form lamellar domains that absorb water in humid air. We use the Scheutjens-Fleer methodology to predict the resulting change in lamellar structure and compare with x-ray scattering. The results suggest locally uniform water distributions. However, under conditions where a PVBTMA and water mixture phase-separate, the two phases arrange into stripes with a dilute stripe sandwiched between two concentrated stripes. A small amount of water enhances conductivity most when it is partitioned into such channels, improving fuel-cell performance.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4914512</identifier><identifier>PMID: 25796265</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cell membranes ; Channels ; Domains ; Fuel cells ; Ion currents ; Ion exchange ; Lamellar structure ; Mathematical models ; Moisture content ; Parameters ; Trimethylamine ; X-ray scattering</subject><ispartof>The Journal of chemical physics, 2015-03, Vol.142 (11), p.114906-114906</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-d1419ad30c97aa84bb514a6d5e2caad228bf8ffc68490804d65047222021c93b3</citedby><cites>FETCH-LOGICAL-c441t-d1419ad30c97aa84bb514a6d5e2caad228bf8ffc68490804d65047222021c93b3</cites><orcidid>0000-0002-7154-6540 ; 0000000271546540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25796265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1421250$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Herbst, Daniel C</creatorcontrib><creatorcontrib>Witten, Thomas A</creatorcontrib><creatorcontrib>Tsai, Tsung-Han</creatorcontrib><creatorcontrib>Bryan Coughlin, E</creatorcontrib><creatorcontrib>Maes, Ashley M</creatorcontrib><creatorcontrib>Herring, Andrew M</creatorcontrib><title>Water uptake profile in a model ion-exchange membrane: conditions for water-rich channels</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Ionic conductivity in a polymeric fuel cell requires water uptake. Previous theoretical studies of water uptake used idealized parameters. We report a parameter-free prediction of the water-swelling behavior of a model fuel cell membrane. The model polymers, poly(methyl-butylene)-block-poly(vinylbenzyl-trimethylamine), form lamellar domains that absorb water in humid air. We use the Scheutjens-Fleer methodology to predict the resulting change in lamellar structure and compare with x-ray scattering. The results suggest locally uniform water distributions. However, under conditions where a PVBTMA and water mixture phase-separate, the two phases arrange into stripes with a dilute stripe sandwiched between two concentrated stripes. A small amount of water enhances conductivity most when it is partitioned into such channels, improving fuel-cell performance.</description><subject>Cell membranes</subject><subject>Channels</subject><subject>Domains</subject><subject>Fuel cells</subject><subject>Ion currents</subject><subject>Ion exchange</subject><subject>Lamellar structure</subject><subject>Mathematical models</subject><subject>Moisture content</subject><subject>Parameters</subject><subject>Trimethylamine</subject><subject>X-ray scattering</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpd0UFP2zAYBmBrYlpL2WF_AFnswg4p_hzHibmhCrZJlbiApp0sx_lC3SVxsRMx_j2u2nHYyQc_evW9egn5AmwJTOZXsBQKRAH8A5kDq1RWSsVOyJwxDpmSTM7IaYxbxhiUXHwiM16USnJZzMnvX2bEQKfdaP4g3QXfug6pG6ihvW-wo84PGf61GzM8Ie2xr4MZ8JpaPzRuTJ-Rtj7Ql31KFpzd0D0dsItn5GNruoifj--CPN7dPqx-ZOv77z9XN-vMCgFj1oAAZZqcWVUaU4m6LkAY2RTIrTEN51XdVm1rZSUUq5hoZMFEyTlP3azK63xBLg65Po5OR-tGtJt03oB21CA48IIldHlAqeHzhHHUvYsWuy6V8VPUIKXkKs8rSPTrf3TrpzCkCjpliUrlUOzVt4OywccYsNW74HoTXjUwvR9Fgz6Okuz5MXGqe2ze5b8V8jcEEYRp</recordid><startdate>20150321</startdate><enddate>20150321</enddate><creator>Herbst, Daniel C</creator><creator>Witten, Thomas A</creator><creator>Tsai, Tsung-Han</creator><creator>Bryan Coughlin, E</creator><creator>Maes, Ashley M</creator><creator>Herring, Andrew M</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7154-6540</orcidid><orcidid>https://orcid.org/0000000271546540</orcidid></search><sort><creationdate>20150321</creationdate><title>Water uptake profile in a model ion-exchange membrane: conditions for water-rich channels</title><author>Herbst, Daniel C ; Witten, Thomas A ; Tsai, Tsung-Han ; Bryan Coughlin, E ; Maes, Ashley M ; Herring, Andrew M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-d1419ad30c97aa84bb514a6d5e2caad228bf8ffc68490804d65047222021c93b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cell membranes</topic><topic>Channels</topic><topic>Domains</topic><topic>Fuel cells</topic><topic>Ion currents</topic><topic>Ion exchange</topic><topic>Lamellar structure</topic><topic>Mathematical models</topic><topic>Moisture content</topic><topic>Parameters</topic><topic>Trimethylamine</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herbst, Daniel C</creatorcontrib><creatorcontrib>Witten, Thomas A</creatorcontrib><creatorcontrib>Tsai, Tsung-Han</creatorcontrib><creatorcontrib>Bryan Coughlin, E</creatorcontrib><creatorcontrib>Maes, Ashley M</creatorcontrib><creatorcontrib>Herring, Andrew M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herbst, Daniel C</au><au>Witten, Thomas A</au><au>Tsai, Tsung-Han</au><au>Bryan Coughlin, E</au><au>Maes, Ashley M</au><au>Herring, Andrew M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water uptake profile in a model ion-exchange membrane: conditions for water-rich channels</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-03-21</date><risdate>2015</risdate><volume>142</volume><issue>11</issue><spage>114906</spage><epage>114906</epage><pages>114906-114906</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Ionic conductivity in a polymeric fuel cell requires water uptake. Previous theoretical studies of water uptake used idealized parameters. We report a parameter-free prediction of the water-swelling behavior of a model fuel cell membrane. The model polymers, poly(methyl-butylene)-block-poly(vinylbenzyl-trimethylamine), form lamellar domains that absorb water in humid air. We use the Scheutjens-Fleer methodology to predict the resulting change in lamellar structure and compare with x-ray scattering. The results suggest locally uniform water distributions. However, under conditions where a PVBTMA and water mixture phase-separate, the two phases arrange into stripes with a dilute stripe sandwiched between two concentrated stripes. A small amount of water enhances conductivity most when it is partitioned into such channels, improving fuel-cell performance.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25796265</pmid><doi>10.1063/1.4914512</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7154-6540</orcidid><orcidid>https://orcid.org/0000000271546540</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-03, Vol.142 (11), p.114906-114906 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_1421250 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Cell membranes Channels Domains Fuel cells Ion currents Ion exchange Lamellar structure Mathematical models Moisture content Parameters Trimethylamine X-ray scattering |
title | Water uptake profile in a model ion-exchange membrane: conditions for water-rich channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20uptake%20profile%20in%20a%20model%20ion-exchange%20membrane:%20conditions%20for%20water-rich%20channels&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Herbst,%20Daniel%20C&rft.date=2015-03-21&rft.volume=142&rft.issue=11&rft.spage=114906&rft.epage=114906&rft.pages=114906-114906&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4914512&rft_dat=%3Cproquest_osti_%3E1666293381%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124893151&rft_id=info:pmid/25796265&rfr_iscdi=true |