An integrated phenology modelling framework in r

Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2018-05, Vol.9 (5), p.1276-1285
Hauptverfasser: Hufkens, Koen, Basler, David, Milliman, Tom, Melaas, Eli K., Richardson, Andrew D., Goslee, Sarah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1285
container_issue 5
container_start_page 1276
container_title Methods in ecology and evolution
container_volume 9
creator Hufkens, Koen
Basler, David
Milliman, Tom
Melaas, Eli K.
Richardson, Andrew D.
Goslee, Sarah
description Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system. Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA‐NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data. We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework. In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.
doi_str_mv 10.1111/2041-210X.12970
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1420342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2034159852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4640-20e20358802b0063711016cc971102ce585e5181ae3306a358d4d8600382edcc3</originalsourceid><addsrcrecordid>eNqFkEFPAjEQhRujiQQ5e93oycPCtN1ddo-EoJhgvGjirandAYpLi-0i4d_buoZ4cy4zmXzvZeYRck1hSEONGGQ0ZRTehpRVYzgjvdPm_M98SQbebyAULytgWY_AxCTatLhyssU62a3R2MaujsnW1tg02qySpZNbPFj3EcDEXZGLpWw8Dn57n7zez16m83Tx_PA4nSxSlRUZpAyQAc_LEtg7QMHHlAItlKriwBTmZY45LalEzqGQgayzuiziYQxrpXif3HS-1rdaeKVbVGtljUHVCpoF84wF6K6D1rIRO6e30h2FlVrMJwsRd8AKFh6vvmhgbzt25-znHn0rNnbvTPhBRDOaV2UeHUcdpZz13uHyZEtBxKhFDFPEMMVP1EFRdIqDbvD4Hy6eZjPeCb8Ba2t7Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034159852</pqid></control><display><type>article</type><title>An integrated phenology modelling framework in r</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Hufkens, Koen ; Basler, David ; Milliman, Tom ; Melaas, Eli K. ; Richardson, Andrew D. ; Goslee, Sarah</creator><contributor>Goslee, Sarah</contributor><creatorcontrib>Hufkens, Koen ; Basler, David ; Milliman, Tom ; Melaas, Eli K. ; Richardson, Andrew D. ; Goslee, Sarah ; Goslee, Sarah</creatorcontrib><description>Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system. Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA‐NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data. We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework. In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.12970</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>Albedo ; Biosphere ; Climate models ; Climate system ; Climatic data ; Data collection ; Environmental Sciences ; Evapotranspiration ; Life Sciences ; modelling ; MODIS land surface phenology ; PEP725 ; PhenoCam ; Phenology ; r package ; Reproducibility ; Surface roughness ; USA‐NPN ; Vegetation</subject><ispartof>Methods in ecology and evolution, 2018-05, Vol.9 (5), p.1276-1285</ispartof><rights>2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Society</rights><rights>Methods in Ecology and Evolution © 2018 British Ecological Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4640-20e20358802b0063711016cc971102ce585e5181ae3306a358d4d8600382edcc3</citedby><cites>FETCH-LOGICAL-c4640-20e20358802b0063711016cc971102ce585e5181ae3306a358d4d8600382edcc3</cites><orcidid>0000-0002-5070-8109 ; 0000000250708109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.12970$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.12970$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02622109$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1420342$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Goslee, Sarah</contributor><creatorcontrib>Hufkens, Koen</creatorcontrib><creatorcontrib>Basler, David</creatorcontrib><creatorcontrib>Milliman, Tom</creatorcontrib><creatorcontrib>Melaas, Eli K.</creatorcontrib><creatorcontrib>Richardson, Andrew D.</creatorcontrib><creatorcontrib>Goslee, Sarah</creatorcontrib><title>An integrated phenology modelling framework in r</title><title>Methods in ecology and evolution</title><description>Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system. Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA‐NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data. We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework. In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.</description><subject>Albedo</subject><subject>Biosphere</subject><subject>Climate models</subject><subject>Climate system</subject><subject>Climatic data</subject><subject>Data collection</subject><subject>Environmental Sciences</subject><subject>Evapotranspiration</subject><subject>Life Sciences</subject><subject>modelling</subject><subject>MODIS land surface phenology</subject><subject>PEP725</subject><subject>PhenoCam</subject><subject>Phenology</subject><subject>r package</subject><subject>Reproducibility</subject><subject>Surface roughness</subject><subject>USA‐NPN</subject><subject>Vegetation</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPAjEQhRujiQQ5e93oycPCtN1ddo-EoJhgvGjirandAYpLi-0i4d_buoZ4cy4zmXzvZeYRck1hSEONGGQ0ZRTehpRVYzgjvdPm_M98SQbebyAULytgWY_AxCTatLhyssU62a3R2MaujsnW1tg02qySpZNbPFj3EcDEXZGLpWw8Dn57n7zez16m83Tx_PA4nSxSlRUZpAyQAc_LEtg7QMHHlAItlKriwBTmZY45LalEzqGQgayzuiziYQxrpXif3HS-1rdaeKVbVGtljUHVCpoF84wF6K6D1rIRO6e30h2FlVrMJwsRd8AKFh6vvmhgbzt25-znHn0rNnbvTPhBRDOaV2UeHUcdpZz13uHyZEtBxKhFDFPEMMVP1EFRdIqDbvD4Hy6eZjPeCb8Ba2t7Og</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Hufkens, Koen</creator><creator>Basler, David</creator><creator>Milliman, Tom</creator><creator>Melaas, Eli K.</creator><creator>Richardson, Andrew D.</creator><creator>Goslee, Sarah</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5070-8109</orcidid><orcidid>https://orcid.org/0000000250708109</orcidid></search><sort><creationdate>201805</creationdate><title>An integrated phenology modelling framework in r</title><author>Hufkens, Koen ; Basler, David ; Milliman, Tom ; Melaas, Eli K. ; Richardson, Andrew D. ; Goslee, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4640-20e20358802b0063711016cc971102ce585e5181ae3306a358d4d8600382edcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Albedo</topic><topic>Biosphere</topic><topic>Climate models</topic><topic>Climate system</topic><topic>Climatic data</topic><topic>Data collection</topic><topic>Environmental Sciences</topic><topic>Evapotranspiration</topic><topic>Life Sciences</topic><topic>modelling</topic><topic>MODIS land surface phenology</topic><topic>PEP725</topic><topic>PhenoCam</topic><topic>Phenology</topic><topic>r package</topic><topic>Reproducibility</topic><topic>Surface roughness</topic><topic>USA‐NPN</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hufkens, Koen</creatorcontrib><creatorcontrib>Basler, David</creatorcontrib><creatorcontrib>Milliman, Tom</creatorcontrib><creatorcontrib>Melaas, Eli K.</creatorcontrib><creatorcontrib>Richardson, Andrew D.</creatorcontrib><creatorcontrib>Goslee, Sarah</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hufkens, Koen</au><au>Basler, David</au><au>Milliman, Tom</au><au>Melaas, Eli K.</au><au>Richardson, Andrew D.</au><au>Goslee, Sarah</au><au>Goslee, Sarah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated phenology modelling framework in r</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2018-05</date><risdate>2018</risdate><volume>9</volume><issue>5</issue><spage>1276</spage><epage>1285</epage><pages>1276-1285</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system. Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA‐NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data. We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework. In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/2041-210X.12970</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5070-8109</orcidid><orcidid>https://orcid.org/0000000250708109</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2018-05, Vol.9 (5), p.1276-1285
issn 2041-210X
2041-210X
language eng
recordid cdi_osti_scitechconnect_1420342
source Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Albedo
Biosphere
Climate models
Climate system
Climatic data
Data collection
Environmental Sciences
Evapotranspiration
Life Sciences
modelling
MODIS land surface phenology
PEP725
PhenoCam
Phenology
r package
Reproducibility
Surface roughness
USA‐NPN
Vegetation
title An integrated phenology modelling framework in r
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20phenology%20modelling%20framework%20in%20r&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Hufkens,%20Koen&rft.date=2018-05&rft.volume=9&rft.issue=5&rft.spage=1276&rft.epage=1285&rft.pages=1276-1285&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.12970&rft_dat=%3Cproquest_osti_%3E2034159852%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2034159852&rft_id=info:pmid/&rfr_iscdi=true