An integrated phenology modelling framework in r
Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climat...
Gespeichert in:
Veröffentlicht in: | Methods in ecology and evolution 2018-05, Vol.9 (5), p.1276-1285 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1285 |
---|---|
container_issue | 5 |
container_start_page | 1276 |
container_title | Methods in ecology and evolution |
container_volume | 9 |
creator | Hufkens, Koen Basler, David Milliman, Tom Melaas, Eli K. Richardson, Andrew D. Goslee, Sarah |
description | Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system.
Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA‐NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data.
We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework.
In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products. |
doi_str_mv | 10.1111/2041-210X.12970 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1420342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2034159852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4640-20e20358802b0063711016cc971102ce585e5181ae3306a358d4d8600382edcc3</originalsourceid><addsrcrecordid>eNqFkEFPAjEQhRujiQQ5e93oycPCtN1ddo-EoJhgvGjirandAYpLi-0i4d_buoZ4cy4zmXzvZeYRck1hSEONGGQ0ZRTehpRVYzgjvdPm_M98SQbebyAULytgWY_AxCTatLhyssU62a3R2MaujsnW1tg02qySpZNbPFj3EcDEXZGLpWw8Dn57n7zez16m83Tx_PA4nSxSlRUZpAyQAc_LEtg7QMHHlAItlKriwBTmZY45LalEzqGQgayzuiziYQxrpXif3HS-1rdaeKVbVGtljUHVCpoF84wF6K6D1rIRO6e30h2FlVrMJwsRd8AKFh6vvmhgbzt25-znHn0rNnbvTPhBRDOaV2UeHUcdpZz13uHyZEtBxKhFDFPEMMVP1EFRdIqDbvD4Hy6eZjPeCb8Ba2t7Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034159852</pqid></control><display><type>article</type><title>An integrated phenology modelling framework in r</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Hufkens, Koen ; Basler, David ; Milliman, Tom ; Melaas, Eli K. ; Richardson, Andrew D. ; Goslee, Sarah</creator><contributor>Goslee, Sarah</contributor><creatorcontrib>Hufkens, Koen ; Basler, David ; Milliman, Tom ; Melaas, Eli K. ; Richardson, Andrew D. ; Goslee, Sarah ; Goslee, Sarah</creatorcontrib><description>Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system.
Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA‐NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data.
We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework.
In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.12970</identifier><language>eng</language><publisher>London: John Wiley & Sons, Inc</publisher><subject>Albedo ; Biosphere ; Climate models ; Climate system ; Climatic data ; Data collection ; Environmental Sciences ; Evapotranspiration ; Life Sciences ; modelling ; MODIS land surface phenology ; PEP725 ; PhenoCam ; Phenology ; r package ; Reproducibility ; Surface roughness ; USA‐NPN ; Vegetation</subject><ispartof>Methods in ecology and evolution, 2018-05, Vol.9 (5), p.1276-1285</ispartof><rights>2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Society</rights><rights>Methods in Ecology and Evolution © 2018 British Ecological Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4640-20e20358802b0063711016cc971102ce585e5181ae3306a358d4d8600382edcc3</citedby><cites>FETCH-LOGICAL-c4640-20e20358802b0063711016cc971102ce585e5181ae3306a358d4d8600382edcc3</cites><orcidid>0000-0002-5070-8109 ; 0000000250708109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.12970$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.12970$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02622109$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1420342$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Goslee, Sarah</contributor><creatorcontrib>Hufkens, Koen</creatorcontrib><creatorcontrib>Basler, David</creatorcontrib><creatorcontrib>Milliman, Tom</creatorcontrib><creatorcontrib>Melaas, Eli K.</creatorcontrib><creatorcontrib>Richardson, Andrew D.</creatorcontrib><creatorcontrib>Goslee, Sarah</creatorcontrib><title>An integrated phenology modelling framework in r</title><title>Methods in ecology and evolution</title><description>Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system.
Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA‐NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data.
We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework.
In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.</description><subject>Albedo</subject><subject>Biosphere</subject><subject>Climate models</subject><subject>Climate system</subject><subject>Climatic data</subject><subject>Data collection</subject><subject>Environmental Sciences</subject><subject>Evapotranspiration</subject><subject>Life Sciences</subject><subject>modelling</subject><subject>MODIS land surface phenology</subject><subject>PEP725</subject><subject>PhenoCam</subject><subject>Phenology</subject><subject>r package</subject><subject>Reproducibility</subject><subject>Surface roughness</subject><subject>USA‐NPN</subject><subject>Vegetation</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPAjEQhRujiQQ5e93oycPCtN1ddo-EoJhgvGjirandAYpLi-0i4d_buoZ4cy4zmXzvZeYRck1hSEONGGQ0ZRTehpRVYzgjvdPm_M98SQbebyAULytgWY_AxCTatLhyssU62a3R2MaujsnW1tg02qySpZNbPFj3EcDEXZGLpWw8Dn57n7zez16m83Tx_PA4nSxSlRUZpAyQAc_LEtg7QMHHlAItlKriwBTmZY45LalEzqGQgayzuiziYQxrpXif3HS-1rdaeKVbVGtljUHVCpoF84wF6K6D1rIRO6e30h2FlVrMJwsRd8AKFh6vvmhgbzt25-znHn0rNnbvTPhBRDOaV2UeHUcdpZz13uHyZEtBxKhFDFPEMMVP1EFRdIqDbvD4Hy6eZjPeCb8Ba2t7Og</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Hufkens, Koen</creator><creator>Basler, David</creator><creator>Milliman, Tom</creator><creator>Melaas, Eli K.</creator><creator>Richardson, Andrew D.</creator><creator>Goslee, Sarah</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5070-8109</orcidid><orcidid>https://orcid.org/0000000250708109</orcidid></search><sort><creationdate>201805</creationdate><title>An integrated phenology modelling framework in r</title><author>Hufkens, Koen ; Basler, David ; Milliman, Tom ; Melaas, Eli K. ; Richardson, Andrew D. ; Goslee, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4640-20e20358802b0063711016cc971102ce585e5181ae3306a358d4d8600382edcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Albedo</topic><topic>Biosphere</topic><topic>Climate models</topic><topic>Climate system</topic><topic>Climatic data</topic><topic>Data collection</topic><topic>Environmental Sciences</topic><topic>Evapotranspiration</topic><topic>Life Sciences</topic><topic>modelling</topic><topic>MODIS land surface phenology</topic><topic>PEP725</topic><topic>PhenoCam</topic><topic>Phenology</topic><topic>r package</topic><topic>Reproducibility</topic><topic>Surface roughness</topic><topic>USA‐NPN</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hufkens, Koen</creatorcontrib><creatorcontrib>Basler, David</creatorcontrib><creatorcontrib>Milliman, Tom</creatorcontrib><creatorcontrib>Melaas, Eli K.</creatorcontrib><creatorcontrib>Richardson, Andrew D.</creatorcontrib><creatorcontrib>Goslee, Sarah</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hufkens, Koen</au><au>Basler, David</au><au>Milliman, Tom</au><au>Melaas, Eli K.</au><au>Richardson, Andrew D.</au><au>Goslee, Sarah</au><au>Goslee, Sarah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated phenology modelling framework in r</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2018-05</date><risdate>2018</risdate><volume>9</volume><issue>5</issue><spage>1276</spage><epage>1285</epage><pages>1276-1285</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Phenology is a first‐order control on productivity and mediates the biophysical environment by altering albedo, surface roughness length and evapotranspiration. Accurate and transparent modelling of vegetation phenology is therefore key in understanding feedbacks between the biosphere and the climate system.
Here, we present the phenor r package and modelling framework. The framework leverages measurements of vegetation phenology from four common phenology observation datasets, the PhenoCam network, the USA National Phenology Network (USA‐NPN), the Pan European Phenology Project (PEP725), MODIS phenology (MCD12Q2) combined with (global) retrospective and projected climate data.
We show an example analysis, using the phenor modelling framework, which quickly and easily compares 20 included spring phenology models for three plant functional types. An analysis of model skill using the root mean squared (RMSE) error shows little or no difference regardless of model structure, corroborating previous studies. We argue that addressing this issue will require novel model development combined with easy data assimilation as facilitated by our framework.
In conclusion, we hope the phenor phenology modelling framework in the r language and environment for statistical computing will facilitate reproducibility and community driven phenology model development, in order to increase their overall predictive power, and leverage an ever growing number of phenology data products.</abstract><cop>London</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/2041-210X.12970</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5070-8109</orcidid><orcidid>https://orcid.org/0000000250708109</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-210X |
ispartof | Methods in ecology and evolution, 2018-05, Vol.9 (5), p.1276-1285 |
issn | 2041-210X 2041-210X |
language | eng |
recordid | cdi_osti_scitechconnect_1420342 |
source | Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Albedo Biosphere Climate models Climate system Climatic data Data collection Environmental Sciences Evapotranspiration Life Sciences modelling MODIS land surface phenology PEP725 PhenoCam Phenology r package Reproducibility Surface roughness USA‐NPN Vegetation |
title | An integrated phenology modelling framework in r |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20phenology%20modelling%20framework%20in%20r&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Hufkens,%20Koen&rft.date=2018-05&rft.volume=9&rft.issue=5&rft.spage=1276&rft.epage=1285&rft.pages=1276-1285&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.12970&rft_dat=%3Cproquest_osti_%3E2034159852%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2034159852&rft_id=info:pmid/&rfr_iscdi=true |