Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries

Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important,owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles.Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2017-11, Vol.10 (11), p.3754-3764
Hauptverfasser: Xie, Jin, Zhao, Jie, Liu, Yayuan, Wang, Haotian, Liu, Chong, Wu, Tong, Hsu, Po-Chun, Lin, Dingchang, Jin, Yang, Cui, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3764
container_issue 11
container_start_page 3754
container_title Nano research
container_volume 10
creator Xie, Jin
Zhao, Jie
Liu, Yayuan
Wang, Haotian
Liu, Chong
Wu, Tong
Hsu, Po-Chun
Lin, Dingchang
Jin, Yang
Cui, Yi
description Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important,owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles.Here,we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique.During prolonged cycling at high-voltage,the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte,as confirmed by electrochemical impedance spectroscopy and Raman characterizations,but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density.As a result,a capacity value close to 200 mA·h·g-1 was achieved for the LiCoO2 electrodes with commercial level loading densities,cycled at the cut-off potential of 4.6 V vs.Li+/Li for 50 stable cycles;this represents a 40% capacity gain,compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs.Li+/Li.
doi_str_mv 10.1007/s12274-017-1588-1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1419766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673533116</cqvip_id><sourcerecordid>2001472943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-a572306fac3aba7e1a41ea3d4b72f737ff585b7764884df91802949cd93e80133</originalsourceid><addsrcrecordid>eNp9kU-P1SAUxRszJvNHP8DsiK47coEWujQvo07yktnomlB6aZn0lTdAjfPtpemoO9nA4nfOPZdTVbdA74BS-SkBY1LUFGQNjVI1vKmuoOtUTcu5-PMGJi6r65SeKG0ZCHVV_bpfRr8gRr-MJE9I0hqdsUiCI0d_CI-M4Iw2xzBgImvaMJPDyVsymxeMZMBzSD77sBAXIknZ9DOSyY9T_TPM2YxIZp8nv57IxvQm5zIM07vqrTNzwvev903148v998O3-vj49eHw-VhbIbtcm0YyTtsSiZveSAQjAA0fRC-Zk1w616iml7IVSonBdaAo60Rnh46josD5TfVh9w0pe52sz2gnG5alLKVBQCfbtkAfd-gcw_OKKeunsMal5NKMUhCyeG5WsFM2hpQiOn2O_mTiiwaqtxb03oIuLeitBQ1Fw3ZNOm9fjPGf8_9Er5ntFJbxuej-TmolbzgHaPlvgOKWEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001472943</pqid></control><display><type>article</type><title>Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries</title><source>SpringerLink Journals</source><creator>Xie, Jin ; Zhao, Jie ; Liu, Yayuan ; Wang, Haotian ; Liu, Chong ; Wu, Tong ; Hsu, Po-Chun ; Lin, Dingchang ; Jin, Yang ; Cui, Yi</creator><creatorcontrib>Xie, Jin ; Zhao, Jie ; Liu, Yayuan ; Wang, Haotian ; Liu, Chong ; Wu, Tong ; Hsu, Po-Chun ; Lin, Dingchang ; Jin, Yang ; Cui, Yi ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important,owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles.Here,we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique.During prolonged cycling at high-voltage,the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte,as confirmed by electrochemical impedance spectroscopy and Raman characterizations,but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density.As a result,a capacity value close to 200 mA&#183;h&#183;g-1 was achieved for the LiCoO2 electrodes with commercial level loading densities,cycled at the cut-off potential of 4.6 V vs.Li+/Li for 50 stable cycles;this represents a 40% capacity gain,compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs.Li+/Li.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1588-1</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>atomic layer deposition ; Atomic layer epitaxy ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemical reactions ; Chemistry and Materials Science ; Coated electrodes ; Condensed Matter Physics ; Electric potential ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; ENERGY STORAGE ; Flux density ; Interface reactions ; Lithium ; lithium cobalt oxide ; Lithium-ion batteries ; Materials Science ; Nanotechnology ; Research Article ; Spectroscopy ; Voltage</subject><ispartof>Nano research, 2017-11, Vol.10 (11), p.3754-3764</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-a572306fac3aba7e1a41ea3d4b72f737ff585b7764884df91802949cd93e80133</citedby><cites>FETCH-LOGICAL-c479t-a572306fac3aba7e1a41ea3d4b72f737ff585b7764884df91802949cd93e80133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1588-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1588-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1419766$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Liu, Yayuan</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Hsu, Po-Chun</creatorcontrib><creatorcontrib>Lin, Dingchang</creatorcontrib><creatorcontrib>Jin, Yang</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important,owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles.Here,we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique.During prolonged cycling at high-voltage,the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte,as confirmed by electrochemical impedance spectroscopy and Raman characterizations,but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density.As a result,a capacity value close to 200 mA&#183;h&#183;g-1 was achieved for the LiCoO2 electrodes with commercial level loading densities,cycled at the cut-off potential of 4.6 V vs.Li+/Li for 50 stable cycles;this represents a 40% capacity gain,compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs.Li+/Li.</description><subject>atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Coated electrodes</subject><subject>Condensed Matter Physics</subject><subject>Electric potential</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>ENERGY STORAGE</subject><subject>Flux density</subject><subject>Interface reactions</subject><subject>Lithium</subject><subject>lithium cobalt oxide</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Research Article</subject><subject>Spectroscopy</subject><subject>Voltage</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU-P1SAUxRszJvNHP8DsiK47coEWujQvo07yktnomlB6aZn0lTdAjfPtpemoO9nA4nfOPZdTVbdA74BS-SkBY1LUFGQNjVI1vKmuoOtUTcu5-PMGJi6r65SeKG0ZCHVV_bpfRr8gRr-MJE9I0hqdsUiCI0d_CI-M4Iw2xzBgImvaMJPDyVsymxeMZMBzSD77sBAXIknZ9DOSyY9T_TPM2YxIZp8nv57IxvQm5zIM07vqrTNzwvev903148v998O3-vj49eHw-VhbIbtcm0YyTtsSiZveSAQjAA0fRC-Zk1w616iml7IVSonBdaAo60Rnh46josD5TfVh9w0pe52sz2gnG5alLKVBQCfbtkAfd-gcw_OKKeunsMal5NKMUhCyeG5WsFM2hpQiOn2O_mTiiwaqtxb03oIuLeitBQ1Fw3ZNOm9fjPGf8_9Er5ntFJbxuej-TmolbzgHaPlvgOKWEg</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Xie, Jin</creator><creator>Zhao, Jie</creator><creator>Liu, Yayuan</creator><creator>Wang, Haotian</creator><creator>Liu, Chong</creator><creator>Wu, Tong</creator><creator>Hsu, Po-Chun</creator><creator>Lin, Dingchang</creator><creator>Jin, Yang</creator><creator>Cui, Yi</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20171101</creationdate><title>Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries</title><author>Xie, Jin ; Zhao, Jie ; Liu, Yayuan ; Wang, Haotian ; Liu, Chong ; Wu, Tong ; Hsu, Po-Chun ; Lin, Dingchang ; Jin, Yang ; Cui, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-a572306fac3aba7e1a41ea3d4b72f737ff585b7764884df91802949cd93e80133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Coated electrodes</topic><topic>Condensed Matter Physics</topic><topic>Electric potential</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>ENERGY STORAGE</topic><topic>Flux density</topic><topic>Interface reactions</topic><topic>Lithium</topic><topic>lithium cobalt oxide</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Research Article</topic><topic>Spectroscopy</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Liu, Yayuan</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Hsu, Po-Chun</creatorcontrib><creatorcontrib>Lin, Dingchang</creatorcontrib><creatorcontrib>Jin, Yang</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Jin</au><au>Zhao, Jie</au><au>Liu, Yayuan</au><au>Wang, Haotian</au><au>Liu, Chong</au><au>Wu, Tong</au><au>Hsu, Po-Chun</au><au>Lin, Dingchang</au><au>Jin, Yang</au><au>Cui, Yi</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>10</volume><issue>11</issue><spage>3754</spage><epage>3764</epage><pages>3754-3764</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important,owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles.Here,we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique.During prolonged cycling at high-voltage,the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte,as confirmed by electrochemical impedance spectroscopy and Raman characterizations,but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density.As a result,a capacity value close to 200 mA&#183;h&#183;g-1 was achieved for the LiCoO2 electrodes with commercial level loading densities,cycled at the cut-off potential of 4.6 V vs.Li+/Li for 50 stable cycles;this represents a 40% capacity gain,compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs.Li+/Li.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1588-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2017-11, Vol.10 (11), p.3754-3764
issn 1998-0124
1998-0000
language eng
recordid cdi_osti_scitechconnect_1419766
source SpringerLink Journals
subjects atomic layer deposition
Atomic layer epitaxy
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemical reactions
Chemistry and Materials Science
Coated electrodes
Condensed Matter Physics
Electric potential
Electrochemical impedance spectroscopy
Electrochemistry
Electrodes
ENERGY STORAGE
Flux density
Interface reactions
Lithium
lithium cobalt oxide
Lithium-ion batteries
Materials Science
Nanotechnology
Research Article
Spectroscopy
Voltage
title Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20surface%20of%20LiCoO2%20electrodes%20using%20atomic%20layer%20deposition%20for%20stable%20high-voltage%20lithium%20ion%20batteries&rft.jtitle=Nano%20research&rft.au=Xie,%20Jin&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2017-11-01&rft.volume=10&rft.issue=11&rft.spage=3754&rft.epage=3764&rft.pages=3754-3764&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1588-1&rft_dat=%3Cproquest_osti_%3E2001472943%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001472943&rft_id=info:pmid/&rft_cqvip_id=673533116&rfr_iscdi=true