Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2018-03, Vol.25 (3)
Hauptverfasser: Glasser, Alexander, Kolemen, Egemen, Glasser, Alan H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of plasmas
container_volume 25
creator Glasser, Alexander
Kolemen, Egemen
Glasser, Alan H.
description To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescale $\tau$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1418995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1418995</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_14189953</originalsourceid><addsrcrecordid>eNqNissKgkAUQGdRkD3-4dJeGElN15bYooge0E6GacSJcW54r9Dn56IPaHUOhzMRQSS3MkzT-DETc6KXlDJOkywQ91IRw2noTG-1cnBFN7BFD9gAtwbOTlGn4GLojZ4MHBX39gMN9mNTLmTbGTg8R4VjtYMCPffolmLaKEdm9eNCrMv9rahCJLY1actGtxq9N5rrKI6yPE82f01fbvo_Sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Glasser, Alexander ; Kolemen, Egemen ; Glasser, Alan H.</creator><creatorcontrib>Glasser, Alexander ; Kolemen, Egemen ; Glasser, Alan H. ; Fusion Theory and Computation, Inc., Kingston, WA (United States)</creatorcontrib><description>To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time &lt; 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescale $\tau$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.</description><identifier>ISSN: 1070-664X</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ideal MHD stability toroidal parallel</subject><ispartof>Physics of plasmas, 2018-03, Vol.25 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000317849396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1418995$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Glasser, Alexander</creatorcontrib><creatorcontrib>Kolemen, Egemen</creatorcontrib><creatorcontrib>Glasser, Alan H.</creatorcontrib><creatorcontrib>Fusion Theory and Computation, Inc., Kingston, WA (United States)</creatorcontrib><title>Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control</title><title>Physics of plasmas</title><description>To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time &lt; 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescale $\tau$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ideal MHD stability toroidal parallel</subject><issn>1070-664X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNissKgkAUQGdRkD3-4dJeGElN15bYooge0E6GacSJcW54r9Dn56IPaHUOhzMRQSS3MkzT-DETc6KXlDJOkywQ91IRw2noTG-1cnBFN7BFD9gAtwbOTlGn4GLojZ4MHBX39gMN9mNTLmTbGTg8R4VjtYMCPffolmLaKEdm9eNCrMv9rahCJLY1actGtxq9N5rrKI6yPE82f01fbvo_Sg</recordid><startdate>20180326</startdate><enddate>20180326</enddate><creator>Glasser, Alexander</creator><creator>Kolemen, Egemen</creator><creator>Glasser, Alan H.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000317849396</orcidid></search><sort><creationdate>20180326</creationdate><title>Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control</title><author>Glasser, Alexander ; Kolemen, Egemen ; Glasser, Alan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_14189953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ideal MHD stability toroidal parallel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glasser, Alexander</creatorcontrib><creatorcontrib>Kolemen, Egemen</creatorcontrib><creatorcontrib>Glasser, Alan H.</creatorcontrib><creatorcontrib>Fusion Theory and Computation, Inc., Kingston, WA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glasser, Alexander</au><au>Kolemen, Egemen</au><au>Glasser, Alan H.</au><aucorp>Fusion Theory and Computation, Inc., Kingston, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control</atitle><jtitle>Physics of plasmas</jtitle><date>2018-03-26</date><risdate>2018</risdate><volume>25</volume><issue>3</issue><issn>1070-664X</issn><abstract>To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time &lt; 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescale $\tau$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000317849396</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2018-03, Vol.25 (3)
issn 1070-664X
language eng
recordid cdi_osti_scitechconnect_1418995
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ideal MHD stability toroidal parallel
title Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Numerical%20Solution%20of%20the%20Plasma%20Response%20Matrix%20for%20Real-time%20Ideal%20MHD%20Control&rft.jtitle=Physics%20of%20plasmas&rft.au=Glasser,%20Alexander&rft.aucorp=Fusion%20Theory%20and%20Computation,%20Inc.,%20Kingston,%20WA%20(United%20States)&rft.date=2018-03-26&rft.volume=25&rft.issue=3&rft.issn=1070-664X&rft_id=info:doi/&rft_dat=%3Costi%3E1418995%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true