Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control
To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi th...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2018-03, Vol.25 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 25 |
creator | Glasser, Alexander Kolemen, Egemen Glasser, Alan H. |
description | To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescale $\tau$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1418995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1418995</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_14189953</originalsourceid><addsrcrecordid>eNqNissKgkAUQGdRkD3-4dJeGElN15bYooge0E6GacSJcW54r9Dn56IPaHUOhzMRQSS3MkzT-DETc6KXlDJOkywQ91IRw2noTG-1cnBFN7BFD9gAtwbOTlGn4GLojZ4MHBX39gMN9mNTLmTbGTg8R4VjtYMCPffolmLaKEdm9eNCrMv9rahCJLY1actGtxq9N5rrKI6yPE82f01fbvo_Sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Glasser, Alexander ; Kolemen, Egemen ; Glasser, Alan H.</creator><creatorcontrib>Glasser, Alexander ; Kolemen, Egemen ; Glasser, Alan H. ; Fusion Theory and Computation, Inc., Kingston, WA (United States)</creatorcontrib><description>To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescale $\tau$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.</description><identifier>ISSN: 1070-664X</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ideal MHD stability toroidal parallel</subject><ispartof>Physics of plasmas, 2018-03, Vol.25 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000317849396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1418995$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Glasser, Alexander</creatorcontrib><creatorcontrib>Kolemen, Egemen</creatorcontrib><creatorcontrib>Glasser, Alan H.</creatorcontrib><creatorcontrib>Fusion Theory and Computation, Inc., Kingston, WA (United States)</creatorcontrib><title>Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control</title><title>Physics of plasmas</title><description>To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescale $\tau$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ideal MHD stability toroidal parallel</subject><issn>1070-664X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNissKgkAUQGdRkD3-4dJeGElN15bYooge0E6GacSJcW54r9Dn56IPaHUOhzMRQSS3MkzT-DETc6KXlDJOkywQ91IRw2noTG-1cnBFN7BFD9gAtwbOTlGn4GLojZ4MHBX39gMN9mNTLmTbGTg8R4VjtYMCPffolmLaKEdm9eNCrMv9rahCJLY1actGtxq9N5rrKI6yPE82f01fbvo_Sg</recordid><startdate>20180326</startdate><enddate>20180326</enddate><creator>Glasser, Alexander</creator><creator>Kolemen, Egemen</creator><creator>Glasser, Alan H.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000317849396</orcidid></search><sort><creationdate>20180326</creationdate><title>Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control</title><author>Glasser, Alexander ; Kolemen, Egemen ; Glasser, Alan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_14189953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ideal MHD stability toroidal parallel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glasser, Alexander</creatorcontrib><creatorcontrib>Kolemen, Egemen</creatorcontrib><creatorcontrib>Glasser, Alan H.</creatorcontrib><creatorcontrib>Fusion Theory and Computation, Inc., Kingston, WA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glasser, Alexander</au><au>Kolemen, Egemen</au><au>Glasser, Alan H.</au><aucorp>Fusion Theory and Computation, Inc., Kingston, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control</atitle><jtitle>Physics of plasmas</jtitle><date>2018-03-26</date><risdate>2018</risdate><volume>25</volume><issue>3</issue><issn>1070-664X</issn><abstract>To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescale $\tau$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000317849396</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2018-03, Vol.25 (3) |
issn | 1070-664X |
language | eng |
recordid | cdi_osti_scitechconnect_1418995 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ideal MHD stability toroidal parallel |
title | Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Numerical%20Solution%20of%20the%20Plasma%20Response%20Matrix%20for%20Real-time%20Ideal%20MHD%20Control&rft.jtitle=Physics%20of%20plasmas&rft.au=Glasser,%20Alexander&rft.aucorp=Fusion%20Theory%20and%20Computation,%20Inc.,%20Kingston,%20WA%20(United%20States)&rft.date=2018-03-26&rft.volume=25&rft.issue=3&rft.issn=1070-664X&rft_id=info:doi/&rft_dat=%3Costi%3E1418995%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |