Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems
We present a systematic approach for the design and optimization of nanoparticle-pigmented solar selective absorbers for operation at 750 °C. Using the scattering and absorption cross-sections calculated by Lorenz-Mie scattering theory as input, we employ a four-flux radiative transfer method to inv...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2018-01, Vol.123 (3) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 123 |
creator | Wang, Xiaoxin Yu, Xiaobai Fu, Sidan Lee, Eldred Kekalo, Katerina Liu, Jifeng |
description | We present a systematic approach for the design and optimization of nanoparticle-pigmented solar selective absorbers for operation at 750 °C. Using the scattering and absorption cross-sections calculated by Lorenz-Mie scattering theory as input, we employ a four-flux radiative transfer method to investigate the solar selectivity mechanism and optimize the optical-to-thermal conversion efficiency (ηtherm) as a function of the metallic nanoparticle material, the nanoparticle diameter, the volume fraction, and the coating thickness. Among the nanoparticle material candidates in this study, C54-TiSi2 is the best option with an optimized ηtherm = 87.0% for a solar concentration ratio of C = 100 and ηtherm = 94.4% for C = 1000 at 750 °C. NiSi is also a promising candidate comparable to TiSi2 in thermal efficiency. Experimentally, an un-optimized 200 nm-diameter TiSi2 nanoparticle-silicone solar selective coating has already achieved ηtherm = 89.8% for C = 1000 at 750 °C. This performance is consistent with the theoretical model and close to the thermal efficiency of the commercial Pyromark 2500 coatings (90.1%). We also demonstrate that Ni/NiSi core-shell structures embedded in the SiO1.5 matrix is thermally stable at 750 °C for 1000 h in air. These results indicate that silicide cermet coatings are promising to achieve high optical performance and high temperature thermal stability simultaneously. |
doi_str_mv | 10.1063/1.5009252 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1417521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115810572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2fa961befc5631cb251b9b769aceabfffe2c0538b09be0e5bb2de0124c4f922c3</originalsourceid><addsrcrecordid>eNp90cFOGzEQBmCrolID9NA3sNpTkTZ4vHF2fayAFiQkLu3Zsp1x4mjXXmwHCZ6hD40hET0g9eTDfPN77CHkC7A5sGV7DnPBmOSCfyAzYL1sOiHYEZkxxqHpZSc_keOct4wB9K2ckb-XmP06UB1WNE7Fj_5JFx8DjY4GHeKkU_F2wGby6xFDwRXNcdCJZhzQFv-AVJsck8FEbaytYZ2pi4lu_HrTFBwnTLrsEtZqsDUgvZpDSNlgGvVA82OuNJ-Sj04PGT8fzhPy5-fV74vr5vbu183Fj9vGtr0sDXdaLsGgs2LZgjVcgJGmW0ptURvnHHLLRNsbJg0yFMbwFTLgC7twknPbnpCv-9yYi1fZ-oJ2U-cL9UUKFtAJDhV926Mpxfsd5qK2cZdCnUtxANEDEx2v6vte2RRzTujUlPyo06MCpl42okAdNlLt2d6-3Pj6y2_4IaZ_UE0r9z_8PvkZm_ieFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115810572</pqid></control><display><type>article</type><title>Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Xiaoxin ; Yu, Xiaobai ; Fu, Sidan ; Lee, Eldred ; Kekalo, Katerina ; Liu, Jifeng</creator><creatorcontrib>Wang, Xiaoxin ; Yu, Xiaobai ; Fu, Sidan ; Lee, Eldred ; Kekalo, Katerina ; Liu, Jifeng</creatorcontrib><description>We present a systematic approach for the design and optimization of nanoparticle-pigmented solar selective absorbers for operation at 750 °C. Using the scattering and absorption cross-sections calculated by Lorenz-Mie scattering theory as input, we employ a four-flux radiative transfer method to investigate the solar selectivity mechanism and optimize the optical-to-thermal conversion efficiency (ηtherm) as a function of the metallic nanoparticle material, the nanoparticle diameter, the volume fraction, and the coating thickness. Among the nanoparticle material candidates in this study, C54-TiSi2 is the best option with an optimized ηtherm = 87.0% for a solar concentration ratio of C = 100 and ηtherm = 94.4% for C = 1000 at 750 °C. NiSi is also a promising candidate comparable to TiSi2 in thermal efficiency. Experimentally, an un-optimized 200 nm-diameter TiSi2 nanoparticle-silicone solar selective coating has already achieved ηtherm = 89.8% for C = 1000 at 750 °C. This performance is consistent with the theoretical model and close to the thermal efficiency of the commercial Pyromark 2500 coatings (90.1%). We also demonstrate that Ni/NiSi core-shell structures embedded in the SiO1.5 matrix is thermally stable at 750 °C for 1000 h in air. These results indicate that silicide cermet coatings are promising to achieve high optical performance and high temperature thermal stability simultaneously.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5009252</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorbers ; Absorption cross sections ; Applied physics ; Ceramic coatings ; Cermets ; Core-shell structure ; Design optimization ; Efficiency ; Intermetallic compounds ; Mie scattering ; Nanoparticles ; Nickel silicide ; Radiative transfer ; Solar heating ; Thermal stability ; Thermodynamic efficiency ; Thickness</subject><ispartof>Journal of applied physics, 2018-01, Vol.123 (3)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2fa961befc5631cb251b9b769aceabfffe2c0538b09be0e5bb2de0124c4f922c3</citedby><cites>FETCH-LOGICAL-c389t-2fa961befc5631cb251b9b769aceabfffe2c0538b09be0e5bb2de0124c4f922c3</cites><orcidid>0000-0002-5391-8056 ; 0000000253918056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5009252$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1417521$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaoxin</creatorcontrib><creatorcontrib>Yu, Xiaobai</creatorcontrib><creatorcontrib>Fu, Sidan</creatorcontrib><creatorcontrib>Lee, Eldred</creatorcontrib><creatorcontrib>Kekalo, Katerina</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><title>Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems</title><title>Journal of applied physics</title><description>We present a systematic approach for the design and optimization of nanoparticle-pigmented solar selective absorbers for operation at 750 °C. Using the scattering and absorption cross-sections calculated by Lorenz-Mie scattering theory as input, we employ a four-flux radiative transfer method to investigate the solar selectivity mechanism and optimize the optical-to-thermal conversion efficiency (ηtherm) as a function of the metallic nanoparticle material, the nanoparticle diameter, the volume fraction, and the coating thickness. Among the nanoparticle material candidates in this study, C54-TiSi2 is the best option with an optimized ηtherm = 87.0% for a solar concentration ratio of C = 100 and ηtherm = 94.4% for C = 1000 at 750 °C. NiSi is also a promising candidate comparable to TiSi2 in thermal efficiency. Experimentally, an un-optimized 200 nm-diameter TiSi2 nanoparticle-silicone solar selective coating has already achieved ηtherm = 89.8% for C = 1000 at 750 °C. This performance is consistent with the theoretical model and close to the thermal efficiency of the commercial Pyromark 2500 coatings (90.1%). We also demonstrate that Ni/NiSi core-shell structures embedded in the SiO1.5 matrix is thermally stable at 750 °C for 1000 h in air. These results indicate that silicide cermet coatings are promising to achieve high optical performance and high temperature thermal stability simultaneously.</description><subject>Absorbers</subject><subject>Absorption cross sections</subject><subject>Applied physics</subject><subject>Ceramic coatings</subject><subject>Cermets</subject><subject>Core-shell structure</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Intermetallic compounds</subject><subject>Mie scattering</subject><subject>Nanoparticles</subject><subject>Nickel silicide</subject><subject>Radiative transfer</subject><subject>Solar heating</subject><subject>Thermal stability</subject><subject>Thermodynamic efficiency</subject><subject>Thickness</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90cFOGzEQBmCrolID9NA3sNpTkTZ4vHF2fayAFiQkLu3Zsp1x4mjXXmwHCZ6hD40hET0g9eTDfPN77CHkC7A5sGV7DnPBmOSCfyAzYL1sOiHYEZkxxqHpZSc_keOct4wB9K2ckb-XmP06UB1WNE7Fj_5JFx8DjY4GHeKkU_F2wGby6xFDwRXNcdCJZhzQFv-AVJsck8FEbaytYZ2pi4lu_HrTFBwnTLrsEtZqsDUgvZpDSNlgGvVA82OuNJ-Sj04PGT8fzhPy5-fV74vr5vbu183Fj9vGtr0sDXdaLsGgs2LZgjVcgJGmW0ptURvnHHLLRNsbJg0yFMbwFTLgC7twknPbnpCv-9yYi1fZ-oJ2U-cL9UUKFtAJDhV926Mpxfsd5qK2cZdCnUtxANEDEx2v6vte2RRzTujUlPyo06MCpl42okAdNlLt2d6-3Pj6y2_4IaZ_UE0r9z_8PvkZm_ieFw</recordid><startdate>20180121</startdate><enddate>20180121</enddate><creator>Wang, Xiaoxin</creator><creator>Yu, Xiaobai</creator><creator>Fu, Sidan</creator><creator>Lee, Eldred</creator><creator>Kekalo, Katerina</creator><creator>Liu, Jifeng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5391-8056</orcidid><orcidid>https://orcid.org/0000000253918056</orcidid></search><sort><creationdate>20180121</creationdate><title>Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems</title><author>Wang, Xiaoxin ; Yu, Xiaobai ; Fu, Sidan ; Lee, Eldred ; Kekalo, Katerina ; Liu, Jifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2fa961befc5631cb251b9b769aceabfffe2c0538b09be0e5bb2de0124c4f922c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorbers</topic><topic>Absorption cross sections</topic><topic>Applied physics</topic><topic>Ceramic coatings</topic><topic>Cermets</topic><topic>Core-shell structure</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Intermetallic compounds</topic><topic>Mie scattering</topic><topic>Nanoparticles</topic><topic>Nickel silicide</topic><topic>Radiative transfer</topic><topic>Solar heating</topic><topic>Thermal stability</topic><topic>Thermodynamic efficiency</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoxin</creatorcontrib><creatorcontrib>Yu, Xiaobai</creatorcontrib><creatorcontrib>Fu, Sidan</creatorcontrib><creatorcontrib>Lee, Eldred</creatorcontrib><creatorcontrib>Kekalo, Katerina</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoxin</au><au>Yu, Xiaobai</au><au>Fu, Sidan</au><au>Lee, Eldred</au><au>Kekalo, Katerina</au><au>Liu, Jifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems</atitle><jtitle>Journal of applied physics</jtitle><date>2018-01-21</date><risdate>2018</risdate><volume>123</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We present a systematic approach for the design and optimization of nanoparticle-pigmented solar selective absorbers for operation at 750 °C. Using the scattering and absorption cross-sections calculated by Lorenz-Mie scattering theory as input, we employ a four-flux radiative transfer method to investigate the solar selectivity mechanism and optimize the optical-to-thermal conversion efficiency (ηtherm) as a function of the metallic nanoparticle material, the nanoparticle diameter, the volume fraction, and the coating thickness. Among the nanoparticle material candidates in this study, C54-TiSi2 is the best option with an optimized ηtherm = 87.0% for a solar concentration ratio of C = 100 and ηtherm = 94.4% for C = 1000 at 750 °C. NiSi is also a promising candidate comparable to TiSi2 in thermal efficiency. Experimentally, an un-optimized 200 nm-diameter TiSi2 nanoparticle-silicone solar selective coating has already achieved ηtherm = 89.8% for C = 1000 at 750 °C. This performance is consistent with the theoretical model and close to the thermal efficiency of the commercial Pyromark 2500 coatings (90.1%). We also demonstrate that Ni/NiSi core-shell structures embedded in the SiO1.5 matrix is thermally stable at 750 °C for 1000 h in air. These results indicate that silicide cermet coatings are promising to achieve high optical performance and high temperature thermal stability simultaneously.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5009252</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5391-8056</orcidid><orcidid>https://orcid.org/0000000253918056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2018-01, Vol.123 (3) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_1417521 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorbers Absorption cross sections Applied physics Ceramic coatings Cermets Core-shell structure Design optimization Efficiency Intermetallic compounds Mie scattering Nanoparticles Nickel silicide Radiative transfer Solar heating Thermal stability Thermodynamic efficiency Thickness |
title | Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20optimization%20of%20nanoparticle-pigmented%20solar%20selective%20absorber%20coatings%20for%20high-temperature%20concentrating%20solar%20thermal%20systems&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wang,%20Xiaoxin&rft.date=2018-01-21&rft.volume=123&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5009252&rft_dat=%3Cproquest_osti_%3E2115810572%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115810572&rft_id=info:pmid/&rfr_iscdi=true |