Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups
Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) a...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2018-03, Vol.28 (13), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 28 |
creator | Yu, Huaizhe Szilvási, Tibor Rai, Prabin Twieg, Robert J. Mavrikakis, Manos Abbott, Nicholas L. |
description | Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) are reported. The LC designs against experiments are tested by synthesizing 4‐(4‐pentyl‐phenyl)‐pyridine and 5‐(4‐pentyl‐phenyl)‐pyrimidine and quantifying LC responses to DMMP and water. Consistent with the computations, pyridine‐containing LCs bind to metal‐cation‐functionalized surfaces too strongly to permit a response to either DMMP or water whereas pyrimidine‐containing LCs undergo a surface‐driven orientational transition in response to DMMP without interference from water. The computation predictions are not strongly dependent on assumptions regarding the degree of coordination of the metal ions but are limited in their ability to predict LC responses when using cations with mostly empty d orbitals. Overall, this work identifies a promising new class of chemoresponsive LCs based on pyrimidine that exhibits enhanced tolerance to water, a result that is important because water is a ubiquitous and particularly challenging chemical interferent in chemical sensing strategies based on LCs. The work also provides further evidence of the transformative utility of computational chemistry methods to design LC materials that exhibit selective orientational responses in specific chemical environments.
New chemoresponsive liquid crystal materials with improved water tolerance are designed using quantum mechanical calculations. Theory helps find the right relative strength of binding of liquid crystals, targeted organophosphates, and nontargeted water to metal‐cation‐functionalized surfaces, leading to selective chemical responses of the liquid crystal. Computational model predictions are verified by experimental results in 14 out of 16 cases. |
doi_str_mv | 10.1002/adfm.201703581 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1417497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019730194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3841-c84b7d5c5beb488c66f2ca3e5593430f796cb1e89bbb8970df132203a35b6d833</originalsourceid><addsrcrecordid>eNqFkbFOwzAURSMEEqWwMlswt9ixkzhjldKCVAQSVGKzEsdpXSV2aiegbAx8AN_Il-A2FYwsfr7Sue_5-XreJYJjBKF_k-ZFNfYhiiAOKDryBihE4QhDnx7_3tHrqXdm7QY6LMJk4H0muqrbJm2kVmkJkrWopG1M9_3xNW9lLnIwFVauFNAFeBal4I18E3tMG2FrrexOL-TWwSAxnW3S0oKllWoFnjojc6kESFW-F1UvZ63ih3lzo9vannsnhbOJi0MdesvZ7UtyN1o8zu-TyWLEMSVoxCnJojzgQSYyQikPw8LnKRZBEGOCYRHFIc-QoHGWZTSOYF4g7PsQpzjIwpxiPPSu-r7aNpJZLhvB11wr5dZiiKCIxJGDrnuoNnrbCtuwjW6Ne6xl7nMd4A7iqHFPcaOtNaJgtdsvNR1DkO3iYLs42G8czhD3hndZiu4fmk2ms4c_7w9IG5G-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019730194</pqid></control><display><type>article</type><title>Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups</title><source>Access via Wiley Online Library</source><creator>Yu, Huaizhe ; Szilvási, Tibor ; Rai, Prabin ; Twieg, Robert J. ; Mavrikakis, Manos ; Abbott, Nicholas L.</creator><creatorcontrib>Yu, Huaizhe ; Szilvási, Tibor ; Rai, Prabin ; Twieg, Robert J. ; Mavrikakis, Manos ; Abbott, Nicholas L.</creatorcontrib><description>Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) are reported. The LC designs against experiments are tested by synthesizing 4‐(4‐pentyl‐phenyl)‐pyridine and 5‐(4‐pentyl‐phenyl)‐pyrimidine and quantifying LC responses to DMMP and water. Consistent with the computations, pyridine‐containing LCs bind to metal‐cation‐functionalized surfaces too strongly to permit a response to either DMMP or water whereas pyrimidine‐containing LCs undergo a surface‐driven orientational transition in response to DMMP without interference from water. The computation predictions are not strongly dependent on assumptions regarding the degree of coordination of the metal ions but are limited in their ability to predict LC responses when using cations with mostly empty d orbitals. Overall, this work identifies a promising new class of chemoresponsive LCs based on pyrimidine that exhibits enhanced tolerance to water, a result that is important because water is a ubiquitous and particularly challenging chemical interferent in chemical sensing strategies based on LCs. The work also provides further evidence of the transformative utility of computational chemistry methods to design LC materials that exhibit selective orientational responses in specific chemical environments.
New chemoresponsive liquid crystal materials with improved water tolerance are designed using quantum mechanical calculations. Theory helps find the right relative strength of binding of liquid crystals, targeted organophosphates, and nontargeted water to metal‐cation‐functionalized surfaces, leading to selective chemical responses of the liquid crystal. Computational model predictions are verified by experimental results in 14 out of 16 cases.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201703581</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cations ; chemically responsive materials ; Computational chemistry ; Functional groups ; functional interfaces ; Liquid crystals ; Materials science ; Materials selection ; optical materials ; sensors</subject><ispartof>Advanced functional materials, 2018-03, Vol.28 (13), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3841-c84b7d5c5beb488c66f2ca3e5593430f796cb1e89bbb8970df132203a35b6d833</citedby><cites>FETCH-LOGICAL-c3841-c84b7d5c5beb488c66f2ca3e5593430f796cb1e89bbb8970df132203a35b6d833</cites><orcidid>0000-0002-9653-0326 ; 0000-0003-2139-6377 ; 0000-0002-4218-1570 ; 0000-0002-5293-5356 ; 0000000242181570 ; 0000000321396377 ; 0000000252935356 ; 0000000296530326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201703581$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201703581$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1417497$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Huaizhe</creatorcontrib><creatorcontrib>Szilvási, Tibor</creatorcontrib><creatorcontrib>Rai, Prabin</creatorcontrib><creatorcontrib>Twieg, Robert J.</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Abbott, Nicholas L.</creatorcontrib><title>Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups</title><title>Advanced functional materials</title><description>Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) are reported. The LC designs against experiments are tested by synthesizing 4‐(4‐pentyl‐phenyl)‐pyridine and 5‐(4‐pentyl‐phenyl)‐pyrimidine and quantifying LC responses to DMMP and water. Consistent with the computations, pyridine‐containing LCs bind to metal‐cation‐functionalized surfaces too strongly to permit a response to either DMMP or water whereas pyrimidine‐containing LCs undergo a surface‐driven orientational transition in response to DMMP without interference from water. The computation predictions are not strongly dependent on assumptions regarding the degree of coordination of the metal ions but are limited in their ability to predict LC responses when using cations with mostly empty d orbitals. Overall, this work identifies a promising new class of chemoresponsive LCs based on pyrimidine that exhibits enhanced tolerance to water, a result that is important because water is a ubiquitous and particularly challenging chemical interferent in chemical sensing strategies based on LCs. The work also provides further evidence of the transformative utility of computational chemistry methods to design LC materials that exhibit selective orientational responses in specific chemical environments.
New chemoresponsive liquid crystal materials with improved water tolerance are designed using quantum mechanical calculations. Theory helps find the right relative strength of binding of liquid crystals, targeted organophosphates, and nontargeted water to metal‐cation‐functionalized surfaces, leading to selective chemical responses of the liquid crystal. Computational model predictions are verified by experimental results in 14 out of 16 cases.</description><subject>Cations</subject><subject>chemically responsive materials</subject><subject>Computational chemistry</subject><subject>Functional groups</subject><subject>functional interfaces</subject><subject>Liquid crystals</subject><subject>Materials science</subject><subject>Materials selection</subject><subject>optical materials</subject><subject>sensors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkbFOwzAURSMEEqWwMlswt9ixkzhjldKCVAQSVGKzEsdpXSV2aiegbAx8AN_Il-A2FYwsfr7Sue_5-XreJYJjBKF_k-ZFNfYhiiAOKDryBihE4QhDnx7_3tHrqXdm7QY6LMJk4H0muqrbJm2kVmkJkrWopG1M9_3xNW9lLnIwFVauFNAFeBal4I18E3tMG2FrrexOL-TWwSAxnW3S0oKllWoFnjojc6kESFW-F1UvZ63ih3lzo9vannsnhbOJi0MdesvZ7UtyN1o8zu-TyWLEMSVoxCnJojzgQSYyQikPw8LnKRZBEGOCYRHFIc-QoHGWZTSOYF4g7PsQpzjIwpxiPPSu-r7aNpJZLhvB11wr5dZiiKCIxJGDrnuoNnrbCtuwjW6Ne6xl7nMd4A7iqHFPcaOtNaJgtdsvNR1DkO3iYLs42G8czhD3hndZiu4fmk2ms4c_7w9IG5G-</recordid><startdate>20180328</startdate><enddate>20180328</enddate><creator>Yu, Huaizhe</creator><creator>Szilvási, Tibor</creator><creator>Rai, Prabin</creator><creator>Twieg, Robert J.</creator><creator>Mavrikakis, Manos</creator><creator>Abbott, Nicholas L.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9653-0326</orcidid><orcidid>https://orcid.org/0000-0003-2139-6377</orcidid><orcidid>https://orcid.org/0000-0002-4218-1570</orcidid><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid><orcidid>https://orcid.org/0000000242181570</orcidid><orcidid>https://orcid.org/0000000321396377</orcidid><orcidid>https://orcid.org/0000000252935356</orcidid><orcidid>https://orcid.org/0000000296530326</orcidid></search><sort><creationdate>20180328</creationdate><title>Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups</title><author>Yu, Huaizhe ; Szilvási, Tibor ; Rai, Prabin ; Twieg, Robert J. ; Mavrikakis, Manos ; Abbott, Nicholas L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3841-c84b7d5c5beb488c66f2ca3e5593430f796cb1e89bbb8970df132203a35b6d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cations</topic><topic>chemically responsive materials</topic><topic>Computational chemistry</topic><topic>Functional groups</topic><topic>functional interfaces</topic><topic>Liquid crystals</topic><topic>Materials science</topic><topic>Materials selection</topic><topic>optical materials</topic><topic>sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Huaizhe</creatorcontrib><creatorcontrib>Szilvási, Tibor</creatorcontrib><creatorcontrib>Rai, Prabin</creatorcontrib><creatorcontrib>Twieg, Robert J.</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Abbott, Nicholas L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Huaizhe</au><au>Szilvási, Tibor</au><au>Rai, Prabin</au><au>Twieg, Robert J.</au><au>Mavrikakis, Manos</au><au>Abbott, Nicholas L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups</atitle><jtitle>Advanced functional materials</jtitle><date>2018-03-28</date><risdate>2018</risdate><volume>28</volume><issue>13</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) are reported. The LC designs against experiments are tested by synthesizing 4‐(4‐pentyl‐phenyl)‐pyridine and 5‐(4‐pentyl‐phenyl)‐pyrimidine and quantifying LC responses to DMMP and water. Consistent with the computations, pyridine‐containing LCs bind to metal‐cation‐functionalized surfaces too strongly to permit a response to either DMMP or water whereas pyrimidine‐containing LCs undergo a surface‐driven orientational transition in response to DMMP without interference from water. The computation predictions are not strongly dependent on assumptions regarding the degree of coordination of the metal ions but are limited in their ability to predict LC responses when using cations with mostly empty d orbitals. Overall, this work identifies a promising new class of chemoresponsive LCs based on pyrimidine that exhibits enhanced tolerance to water, a result that is important because water is a ubiquitous and particularly challenging chemical interferent in chemical sensing strategies based on LCs. The work also provides further evidence of the transformative utility of computational chemistry methods to design LC materials that exhibit selective orientational responses in specific chemical environments.
New chemoresponsive liquid crystal materials with improved water tolerance are designed using quantum mechanical calculations. Theory helps find the right relative strength of binding of liquid crystals, targeted organophosphates, and nontargeted water to metal‐cation‐functionalized surfaces, leading to selective chemical responses of the liquid crystal. Computational model predictions are verified by experimental results in 14 out of 16 cases.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201703581</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9653-0326</orcidid><orcidid>https://orcid.org/0000-0003-2139-6377</orcidid><orcidid>https://orcid.org/0000-0002-4218-1570</orcidid><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid><orcidid>https://orcid.org/0000000242181570</orcidid><orcidid>https://orcid.org/0000000321396377</orcidid><orcidid>https://orcid.org/0000000252935356</orcidid><orcidid>https://orcid.org/0000000296530326</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2018-03, Vol.28 (13), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_osti_scitechconnect_1417497 |
source | Access via Wiley Online Library |
subjects | Cations chemically responsive materials Computational chemistry Functional groups functional interfaces Liquid crystals Materials science Materials selection optical materials sensors |
title | Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Chemistry%E2%80%90Guided%20Design%20of%20Selective%20Chemoresponsive%20Liquid%20Crystals%20Using%20Pyridine%20and%20Pyrimidine%20Functional%20Groups&rft.jtitle=Advanced%20functional%20materials&rft.au=Yu,%20Huaizhe&rft.date=2018-03-28&rft.volume=28&rft.issue=13&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201703581&rft_dat=%3Cproquest_osti_%3E2019730194%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019730194&rft_id=info:pmid/&rfr_iscdi=true |