Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups

Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-03, Vol.28 (13), p.n/a
Hauptverfasser: Yu, Huaizhe, Szilvási, Tibor, Rai, Prabin, Twieg, Robert J., Mavrikakis, Manos, Abbott, Nicholas L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page
container_title Advanced functional materials
container_volume 28
creator Yu, Huaizhe
Szilvási, Tibor
Rai, Prabin
Twieg, Robert J.
Mavrikakis, Manos
Abbott, Nicholas L.
description Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) are reported. The LC designs against experiments are tested by synthesizing 4‐(4‐pentyl‐phenyl)‐pyridine and 5‐(4‐pentyl‐phenyl)‐pyrimidine and quantifying LC responses to DMMP and water. Consistent with the computations, pyridine‐containing LCs bind to metal‐cation‐functionalized surfaces too strongly to permit a response to either DMMP or water whereas pyrimidine‐containing LCs undergo a surface‐driven orientational transition in response to DMMP without interference from water. The computation predictions are not strongly dependent on assumptions regarding the degree of coordination of the metal ions but are limited in their ability to predict LC responses when using cations with mostly empty d orbitals. Overall, this work identifies a promising new class of chemoresponsive LCs based on pyrimidine that exhibits enhanced tolerance to water, a result that is important because water is a ubiquitous and particularly challenging chemical interferent in chemical sensing strategies based on LCs. The work also provides further evidence of the transformative utility of computational chemistry methods to design LC materials that exhibit selective orientational responses in specific chemical environments. New chemoresponsive liquid crystal materials with improved water tolerance are designed using quantum mechanical calculations. Theory helps find the right relative strength of binding of liquid crystals, targeted organophosphates, and nontargeted water to metal‐cation‐functionalized surfaces, leading to selective chemical responses of the liquid crystal. Computational model predictions are verified by experimental results in 14 out of 16 cases.
doi_str_mv 10.1002/adfm.201703581
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1417497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019730194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3841-c84b7d5c5beb488c66f2ca3e5593430f796cb1e89bbb8970df132203a35b6d833</originalsourceid><addsrcrecordid>eNqFkbFOwzAURSMEEqWwMlswt9ixkzhjldKCVAQSVGKzEsdpXSV2aiegbAx8AN_Il-A2FYwsfr7Sue_5-XreJYJjBKF_k-ZFNfYhiiAOKDryBihE4QhDnx7_3tHrqXdm7QY6LMJk4H0muqrbJm2kVmkJkrWopG1M9_3xNW9lLnIwFVauFNAFeBal4I18E3tMG2FrrexOL-TWwSAxnW3S0oKllWoFnjojc6kESFW-F1UvZ63ih3lzo9vannsnhbOJi0MdesvZ7UtyN1o8zu-TyWLEMSVoxCnJojzgQSYyQikPw8LnKRZBEGOCYRHFIc-QoHGWZTSOYF4g7PsQpzjIwpxiPPSu-r7aNpJZLhvB11wr5dZiiKCIxJGDrnuoNnrbCtuwjW6Ne6xl7nMd4A7iqHFPcaOtNaJgtdsvNR1DkO3iYLs42G8czhD3hndZiu4fmk2ms4c_7w9IG5G-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019730194</pqid></control><display><type>article</type><title>Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups</title><source>Access via Wiley Online Library</source><creator>Yu, Huaizhe ; Szilvási, Tibor ; Rai, Prabin ; Twieg, Robert J. ; Mavrikakis, Manos ; Abbott, Nicholas L.</creator><creatorcontrib>Yu, Huaizhe ; Szilvási, Tibor ; Rai, Prabin ; Twieg, Robert J. ; Mavrikakis, Manos ; Abbott, Nicholas L.</creatorcontrib><description>Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) are reported. The LC designs against experiments are tested by synthesizing 4‐(4‐pentyl‐phenyl)‐pyridine and 5‐(4‐pentyl‐phenyl)‐pyrimidine and quantifying LC responses to DMMP and water. Consistent with the computations, pyridine‐containing LCs bind to metal‐cation‐functionalized surfaces too strongly to permit a response to either DMMP or water whereas pyrimidine‐containing LCs undergo a surface‐driven orientational transition in response to DMMP without interference from water. The computation predictions are not strongly dependent on assumptions regarding the degree of coordination of the metal ions but are limited in their ability to predict LC responses when using cations with mostly empty d orbitals. Overall, this work identifies a promising new class of chemoresponsive LCs based on pyrimidine that exhibits enhanced tolerance to water, a result that is important because water is a ubiquitous and particularly challenging chemical interferent in chemical sensing strategies based on LCs. The work also provides further evidence of the transformative utility of computational chemistry methods to design LC materials that exhibit selective orientational responses in specific chemical environments. New chemoresponsive liquid crystal materials with improved water tolerance are designed using quantum mechanical calculations. Theory helps find the right relative strength of binding of liquid crystals, targeted organophosphates, and nontargeted water to metal‐cation‐functionalized surfaces, leading to selective chemical responses of the liquid crystal. Computational model predictions are verified by experimental results in 14 out of 16 cases.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201703581</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cations ; chemically responsive materials ; Computational chemistry ; Functional groups ; functional interfaces ; Liquid crystals ; Materials science ; Materials selection ; optical materials ; sensors</subject><ispartof>Advanced functional materials, 2018-03, Vol.28 (13), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3841-c84b7d5c5beb488c66f2ca3e5593430f796cb1e89bbb8970df132203a35b6d833</citedby><cites>FETCH-LOGICAL-c3841-c84b7d5c5beb488c66f2ca3e5593430f796cb1e89bbb8970df132203a35b6d833</cites><orcidid>0000-0002-9653-0326 ; 0000-0003-2139-6377 ; 0000-0002-4218-1570 ; 0000-0002-5293-5356 ; 0000000242181570 ; 0000000321396377 ; 0000000252935356 ; 0000000296530326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201703581$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201703581$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1417497$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Huaizhe</creatorcontrib><creatorcontrib>Szilvási, Tibor</creatorcontrib><creatorcontrib>Rai, Prabin</creatorcontrib><creatorcontrib>Twieg, Robert J.</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Abbott, Nicholas L.</creatorcontrib><title>Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups</title><title>Advanced functional materials</title><description>Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) are reported. The LC designs against experiments are tested by synthesizing 4‐(4‐pentyl‐phenyl)‐pyridine and 5‐(4‐pentyl‐phenyl)‐pyrimidine and quantifying LC responses to DMMP and water. Consistent with the computations, pyridine‐containing LCs bind to metal‐cation‐functionalized surfaces too strongly to permit a response to either DMMP or water whereas pyrimidine‐containing LCs undergo a surface‐driven orientational transition in response to DMMP without interference from water. The computation predictions are not strongly dependent on assumptions regarding the degree of coordination of the metal ions but are limited in their ability to predict LC responses when using cations with mostly empty d orbitals. Overall, this work identifies a promising new class of chemoresponsive LCs based on pyrimidine that exhibits enhanced tolerance to water, a result that is important because water is a ubiquitous and particularly challenging chemical interferent in chemical sensing strategies based on LCs. The work also provides further evidence of the transformative utility of computational chemistry methods to design LC materials that exhibit selective orientational responses in specific chemical environments. New chemoresponsive liquid crystal materials with improved water tolerance are designed using quantum mechanical calculations. Theory helps find the right relative strength of binding of liquid crystals, targeted organophosphates, and nontargeted water to metal‐cation‐functionalized surfaces, leading to selective chemical responses of the liquid crystal. Computational model predictions are verified by experimental results in 14 out of 16 cases.</description><subject>Cations</subject><subject>chemically responsive materials</subject><subject>Computational chemistry</subject><subject>Functional groups</subject><subject>functional interfaces</subject><subject>Liquid crystals</subject><subject>Materials science</subject><subject>Materials selection</subject><subject>optical materials</subject><subject>sensors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkbFOwzAURSMEEqWwMlswt9ixkzhjldKCVAQSVGKzEsdpXSV2aiegbAx8AN_Il-A2FYwsfr7Sue_5-XreJYJjBKF_k-ZFNfYhiiAOKDryBihE4QhDnx7_3tHrqXdm7QY6LMJk4H0muqrbJm2kVmkJkrWopG1M9_3xNW9lLnIwFVauFNAFeBal4I18E3tMG2FrrexOL-TWwSAxnW3S0oKllWoFnjojc6kESFW-F1UvZ63ih3lzo9vannsnhbOJi0MdesvZ7UtyN1o8zu-TyWLEMSVoxCnJojzgQSYyQikPw8LnKRZBEGOCYRHFIc-QoHGWZTSOYF4g7PsQpzjIwpxiPPSu-r7aNpJZLhvB11wr5dZiiKCIxJGDrnuoNnrbCtuwjW6Ne6xl7nMd4A7iqHFPcaOtNaJgtdsvNR1DkO3iYLs42G8czhD3hndZiu4fmk2ms4c_7w9IG5G-</recordid><startdate>20180328</startdate><enddate>20180328</enddate><creator>Yu, Huaizhe</creator><creator>Szilvási, Tibor</creator><creator>Rai, Prabin</creator><creator>Twieg, Robert J.</creator><creator>Mavrikakis, Manos</creator><creator>Abbott, Nicholas L.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9653-0326</orcidid><orcidid>https://orcid.org/0000-0003-2139-6377</orcidid><orcidid>https://orcid.org/0000-0002-4218-1570</orcidid><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid><orcidid>https://orcid.org/0000000242181570</orcidid><orcidid>https://orcid.org/0000000321396377</orcidid><orcidid>https://orcid.org/0000000252935356</orcidid><orcidid>https://orcid.org/0000000296530326</orcidid></search><sort><creationdate>20180328</creationdate><title>Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups</title><author>Yu, Huaizhe ; Szilvási, Tibor ; Rai, Prabin ; Twieg, Robert J. ; Mavrikakis, Manos ; Abbott, Nicholas L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3841-c84b7d5c5beb488c66f2ca3e5593430f796cb1e89bbb8970df132203a35b6d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cations</topic><topic>chemically responsive materials</topic><topic>Computational chemistry</topic><topic>Functional groups</topic><topic>functional interfaces</topic><topic>Liquid crystals</topic><topic>Materials science</topic><topic>Materials selection</topic><topic>optical materials</topic><topic>sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Huaizhe</creatorcontrib><creatorcontrib>Szilvási, Tibor</creatorcontrib><creatorcontrib>Rai, Prabin</creatorcontrib><creatorcontrib>Twieg, Robert J.</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Abbott, Nicholas L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Huaizhe</au><au>Szilvási, Tibor</au><au>Rai, Prabin</au><au>Twieg, Robert J.</au><au>Mavrikakis, Manos</au><au>Abbott, Nicholas L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups</atitle><jtitle>Advanced functional materials</jtitle><date>2018-03-28</date><risdate>2018</risdate><volume>28</volume><issue>13</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Computational chemistry‐guided designs of chemoresponsive liquid crystals (LCs) with pyridine or pyrimidine groups that bind to metal‐cation‐functionalized surfaces to provide improved selective responses to targeted vapor species (dimethylmethylphosphonate (DMMP)) over nontargeted species (water) are reported. The LC designs against experiments are tested by synthesizing 4‐(4‐pentyl‐phenyl)‐pyridine and 5‐(4‐pentyl‐phenyl)‐pyrimidine and quantifying LC responses to DMMP and water. Consistent with the computations, pyridine‐containing LCs bind to metal‐cation‐functionalized surfaces too strongly to permit a response to either DMMP or water whereas pyrimidine‐containing LCs undergo a surface‐driven orientational transition in response to DMMP without interference from water. The computation predictions are not strongly dependent on assumptions regarding the degree of coordination of the metal ions but are limited in their ability to predict LC responses when using cations with mostly empty d orbitals. Overall, this work identifies a promising new class of chemoresponsive LCs based on pyrimidine that exhibits enhanced tolerance to water, a result that is important because water is a ubiquitous and particularly challenging chemical interferent in chemical sensing strategies based on LCs. The work also provides further evidence of the transformative utility of computational chemistry methods to design LC materials that exhibit selective orientational responses in specific chemical environments. New chemoresponsive liquid crystal materials with improved water tolerance are designed using quantum mechanical calculations. Theory helps find the right relative strength of binding of liquid crystals, targeted organophosphates, and nontargeted water to metal‐cation‐functionalized surfaces, leading to selective chemical responses of the liquid crystal. Computational model predictions are verified by experimental results in 14 out of 16 cases.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201703581</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9653-0326</orcidid><orcidid>https://orcid.org/0000-0003-2139-6377</orcidid><orcidid>https://orcid.org/0000-0002-4218-1570</orcidid><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid><orcidid>https://orcid.org/0000000242181570</orcidid><orcidid>https://orcid.org/0000000321396377</orcidid><orcidid>https://orcid.org/0000000252935356</orcidid><orcidid>https://orcid.org/0000000296530326</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-03, Vol.28 (13), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1417497
source Access via Wiley Online Library
subjects Cations
chemically responsive materials
Computational chemistry
Functional groups
functional interfaces
Liquid crystals
Materials science
Materials selection
optical materials
sensors
title Computational Chemistry‐Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Chemistry%E2%80%90Guided%20Design%20of%20Selective%20Chemoresponsive%20Liquid%20Crystals%20Using%20Pyridine%20and%20Pyrimidine%20Functional%20Groups&rft.jtitle=Advanced%20functional%20materials&rft.au=Yu,%20Huaizhe&rft.date=2018-03-28&rft.volume=28&rft.issue=13&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201703581&rft_dat=%3Cproquest_osti_%3E2019730194%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019730194&rft_id=info:pmid/&rfr_iscdi=true