Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D

Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure–function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces invol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-11, Vol.11 (11), p.10945-10954
Hauptverfasser: Yau, Allison, Harder, Ross J, Kanan, Matthew W, Ulvestad, Andrew
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10954
container_issue 11
container_start_page 10945
container_title ACS nano
container_volume 11
creator Yau, Allison
Harder, Ross J
Kanan, Matthew W
Ulvestad, Andrew
description Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure–function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125–325 nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen-poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.
doi_str_mv 10.1021/acsnano.7b04735
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1415596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952101704</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-9cebf4737e5aecc9a8b820882c725c998d19283825c511f1a234c0922dba226e3</originalsourceid><addsrcrecordid>eNp1kU1PwzAMhiMEYuPjzA1FnJDQRpI2bXKcgH1Ik-AAErcoTdMto01G0iL13xPY2I2TbfnxK9svAFcYjTEi-F6qYKV147xAaZ7QIzDEPMlGiGXvx4ec4gE4C2GDEM1Znp2CAeEooZSyIfhYNHJl7Aq2aw3nfendSls4KYLz29Y4Cx97KxujAnQVXNjSfJmykzWceWlsgMbCF1f3yvehlXVtrIYvMcrSdA18Xcf21NTNL5c8XoCTStZBX-7jOXibPr0-zEfL59niYbIcyZRk7YgrXVTxmlxTqZXikhWMIMaIyglVnLMSc8ISFguKcYUlSVKFOCFlIQnJdHIObna6LrRGBGVardbKWatVK3CKKeVZhG530Na7z06HVjQmKB13t9p1QWBOCUY4R2lE73eo8i4Eryux9aaRvhcYiR8bxN4GsbchTlzvxbui0eWB__t7BO52QJwUG9d5Gx_yr9w3b9yS7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952101704</pqid></control><display><type>article</type><title>Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D</title><source>American Chemical Society Journals</source><creator>Yau, Allison ; Harder, Ross J ; Kanan, Matthew W ; Ulvestad, Andrew</creator><creatorcontrib>Yau, Allison ; Harder, Ross J ; Kanan, Matthew W ; Ulvestad, Andrew ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure–function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125–325 nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen-poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b04735</identifier><identifier>PMID: 29035558</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2017-11, Vol.11 (11), p.10945-10954</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a426t-9cebf4737e5aecc9a8b820882c725c998d19283825c511f1a234c0922dba226e3</citedby><cites>FETCH-LOGICAL-a426t-9cebf4737e5aecc9a8b820882c725c998d19283825c511f1a234c0922dba226e3</cites><orcidid>0000-0002-5932-6289 ; 0000-0003-4611-2561 ; 0000000259326289 ; 0000000346112561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b04735$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b04735$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29035558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1415596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yau, Allison</creatorcontrib><creatorcontrib>Harder, Ross J</creatorcontrib><creatorcontrib>Kanan, Matthew W</creatorcontrib><creatorcontrib>Ulvestad, Andrew</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure–function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125–325 nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen-poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU1PwzAMhiMEYuPjzA1FnJDQRpI2bXKcgH1Ik-AAErcoTdMto01G0iL13xPY2I2TbfnxK9svAFcYjTEi-F6qYKV147xAaZ7QIzDEPMlGiGXvx4ec4gE4C2GDEM1Znp2CAeEooZSyIfhYNHJl7Aq2aw3nfendSls4KYLz29Y4Cx97KxujAnQVXNjSfJmykzWceWlsgMbCF1f3yvehlXVtrIYvMcrSdA18Xcf21NTNL5c8XoCTStZBX-7jOXibPr0-zEfL59niYbIcyZRk7YgrXVTxmlxTqZXikhWMIMaIyglVnLMSc8ISFguKcYUlSVKFOCFlIQnJdHIObna6LrRGBGVardbKWatVK3CKKeVZhG530Na7z06HVjQmKB13t9p1QWBOCUY4R2lE73eo8i4Eryux9aaRvhcYiR8bxN4GsbchTlzvxbui0eWB__t7BO52QJwUG9d5Gx_yr9w3b9yS7w</recordid><startdate>20171128</startdate><enddate>20171128</enddate><creator>Yau, Allison</creator><creator>Harder, Ross J</creator><creator>Kanan, Matthew W</creator><creator>Ulvestad, Andrew</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5932-6289</orcidid><orcidid>https://orcid.org/0000-0003-4611-2561</orcidid><orcidid>https://orcid.org/0000000259326289</orcidid><orcidid>https://orcid.org/0000000346112561</orcidid></search><sort><creationdate>20171128</creationdate><title>Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D</title><author>Yau, Allison ; Harder, Ross J ; Kanan, Matthew W ; Ulvestad, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-9cebf4737e5aecc9a8b820882c725c998d19283825c511f1a234c0922dba226e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yau, Allison</creatorcontrib><creatorcontrib>Harder, Ross J</creatorcontrib><creatorcontrib>Kanan, Matthew W</creatorcontrib><creatorcontrib>Ulvestad, Andrew</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yau, Allison</au><au>Harder, Ross J</au><au>Kanan, Matthew W</au><au>Ulvestad, Andrew</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-11-28</date><risdate>2017</risdate><volume>11</volume><issue>11</issue><spage>10945</spage><epage>10954</epage><pages>10945-10954</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure–function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125–325 nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen-poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29035558</pmid><doi>10.1021/acsnano.7b04735</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5932-6289</orcidid><orcidid>https://orcid.org/0000-0003-4611-2561</orcidid><orcidid>https://orcid.org/0000000259326289</orcidid><orcidid>https://orcid.org/0000000346112561</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2017-11, Vol.11 (11), p.10945-10954
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1415596
source American Chemical Society Journals
title Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20the%20Hydrogen%20Absorption%20Dynamics%20of%20Individual%20Grains%20in%20Polycrystalline%20Palladium%20Thin%20Films%20in%203D&rft.jtitle=ACS%20nano&rft.au=Yau,%20Allison&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-11-28&rft.volume=11&rft.issue=11&rft.spage=10945&rft.epage=10954&rft.pages=10945-10954&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b04735&rft_dat=%3Cproquest_osti_%3E1952101704%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952101704&rft_id=info:pmid/29035558&rfr_iscdi=true