Global sensitivity metrics from active subspaces
Predictions from science and engineering models depend on several input parameters. Global sensitivity analysis quantifies the importance of each input parameter, which can lead to insight into the model and reduced computational cost; commonly used sensitivity metrics include Sobol' total sens...
Gespeichert in:
Veröffentlicht in: | Reliability engineering & system safety 2017-06, Vol.162 (C), p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | C |
container_start_page | 1 |
container_title | Reliability engineering & system safety |
container_volume | 162 |
creator | Constantine, Paul G. Diaz, Paul |
description | Predictions from science and engineering models depend on several input parameters. Global sensitivity analysis quantifies the importance of each input parameter, which can lead to insight into the model and reduced computational cost; commonly used sensitivity metrics include Sobol' total sensitivity indices and derivative-based global sensitivity measures. Active subspaces are part of an emerging set of tools for identifying important directions in a model's input parameter space; these directions can be exploited to reduce the model's dimension enabling otherwise infeasible parameter studies. In this paper, we develop global sensitivity metrics called activity scores from the active subspace, which yield insight into the important model parameters. We mathematically relate the activity scores to established sensitivity metrics, and we discuss computational methods to estimate the activity scores. We show two numerical examples with algebraic functions taken from simplified engineering models. For each model, we analyze the active subspace and discuss how to exploit the low-dimensional structure. We then show that input rankings produced by the activity scores are consistent with rankings produced by the standard metrics. |
doi_str_mv | 10.1016/j.ress.2017.01.013 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1414794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832016303052</els_id><sourcerecordid>S0951832016303052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-520e2e726515498aaff66fb23bd20256f1344db764efbaadf232c62fb19a6de23</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFb_gKfgPXFmd7NJwIsUrULBi56XzWYWt7RJ2YmF_nsT6ll48GB472N4QtwjFAhoHrdFIuZCAlYF4CR1IRZYV00OtTKXYgFNiXmtJFyLG-YtAOimrBYC1ruhdbuMqec4xmMcT9mexhQ9ZyEN-8z56UoZ_7R8cJ74VlwFt2O6-_Ol-Hp9-Vy95ZuP9fvqeZN7VeGYlxJIUiVNiaVuaudCMCa0UrWdBFmagErrrq2MptA61wWppDcytNg405FUS_Fw5g48Rss-juS__dD35EeLGnXV6CkkzyGfBuZEwR5S3Lt0sgh2HsZu7TyMnYexgJPUVHo6l2h6_xgpzXTqPXUxzfBuiP_VfwGvrWw2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global sensitivity metrics from active subspaces</title><source>Access via ScienceDirect (Elsevier)</source><creator>Constantine, Paul G. ; Diaz, Paul</creator><creatorcontrib>Constantine, Paul G. ; Diaz, Paul</creatorcontrib><description>Predictions from science and engineering models depend on several input parameters. Global sensitivity analysis quantifies the importance of each input parameter, which can lead to insight into the model and reduced computational cost; commonly used sensitivity metrics include Sobol' total sensitivity indices and derivative-based global sensitivity measures. Active subspaces are part of an emerging set of tools for identifying important directions in a model's input parameter space; these directions can be exploited to reduce the model's dimension enabling otherwise infeasible parameter studies. In this paper, we develop global sensitivity metrics called activity scores from the active subspace, which yield insight into the important model parameters. We mathematically relate the activity scores to established sensitivity metrics, and we discuss computational methods to estimate the activity scores. We show two numerical examples with algebraic functions taken from simplified engineering models. For each model, we analyze the active subspace and discuss how to exploit the low-dimensional structure. We then show that input rankings produced by the activity scores are consistent with rankings produced by the standard metrics.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2017.01.013</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Active subspaces ; Activity score ; Sensitivity analysis</subject><ispartof>Reliability engineering & system safety, 2017-06, Vol.162 (C), p.1-13</ispartof><rights>2017 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-520e2e726515498aaff66fb23bd20256f1344db764efbaadf232c62fb19a6de23</citedby><cites>FETCH-LOGICAL-c371t-520e2e726515498aaff66fb23bd20256f1344db764efbaadf232c62fb19a6de23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ress.2017.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1414794$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Constantine, Paul G.</creatorcontrib><creatorcontrib>Diaz, Paul</creatorcontrib><title>Global sensitivity metrics from active subspaces</title><title>Reliability engineering & system safety</title><description>Predictions from science and engineering models depend on several input parameters. Global sensitivity analysis quantifies the importance of each input parameter, which can lead to insight into the model and reduced computational cost; commonly used sensitivity metrics include Sobol' total sensitivity indices and derivative-based global sensitivity measures. Active subspaces are part of an emerging set of tools for identifying important directions in a model's input parameter space; these directions can be exploited to reduce the model's dimension enabling otherwise infeasible parameter studies. In this paper, we develop global sensitivity metrics called activity scores from the active subspace, which yield insight into the important model parameters. We mathematically relate the activity scores to established sensitivity metrics, and we discuss computational methods to estimate the activity scores. We show two numerical examples with algebraic functions taken from simplified engineering models. For each model, we analyze the active subspace and discuss how to exploit the low-dimensional structure. We then show that input rankings produced by the activity scores are consistent with rankings produced by the standard metrics.</description><subject>Active subspaces</subject><subject>Activity score</subject><subject>Sensitivity analysis</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFb_gKfgPXFmd7NJwIsUrULBi56XzWYWt7RJ2YmF_nsT6ll48GB472N4QtwjFAhoHrdFIuZCAlYF4CR1IRZYV00OtTKXYgFNiXmtJFyLG-YtAOimrBYC1ruhdbuMqec4xmMcT9mexhQ9ZyEN-8z56UoZ_7R8cJ74VlwFt2O6-_Ol-Hp9-Vy95ZuP9fvqeZN7VeGYlxJIUiVNiaVuaudCMCa0UrWdBFmagErrrq2MptA61wWppDcytNg405FUS_Fw5g48Rss-juS__dD35EeLGnXV6CkkzyGfBuZEwR5S3Lt0sgh2HsZu7TyMnYexgJPUVHo6l2h6_xgpzXTqPXUxzfBuiP_VfwGvrWw2</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Constantine, Paul G.</creator><creator>Diaz, Paul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201706</creationdate><title>Global sensitivity metrics from active subspaces</title><author>Constantine, Paul G. ; Diaz, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-520e2e726515498aaff66fb23bd20256f1344db764efbaadf232c62fb19a6de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active subspaces</topic><topic>Activity score</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantine, Paul G.</creatorcontrib><creatorcontrib>Diaz, Paul</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Reliability engineering & system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantine, Paul G.</au><au>Diaz, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global sensitivity metrics from active subspaces</atitle><jtitle>Reliability engineering & system safety</jtitle><date>2017-06</date><risdate>2017</risdate><volume>162</volume><issue>C</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>Predictions from science and engineering models depend on several input parameters. Global sensitivity analysis quantifies the importance of each input parameter, which can lead to insight into the model and reduced computational cost; commonly used sensitivity metrics include Sobol' total sensitivity indices and derivative-based global sensitivity measures. Active subspaces are part of an emerging set of tools for identifying important directions in a model's input parameter space; these directions can be exploited to reduce the model's dimension enabling otherwise infeasible parameter studies. In this paper, we develop global sensitivity metrics called activity scores from the active subspace, which yield insight into the important model parameters. We mathematically relate the activity scores to established sensitivity metrics, and we discuss computational methods to estimate the activity scores. We show two numerical examples with algebraic functions taken from simplified engineering models. For each model, we analyze the active subspace and discuss how to exploit the low-dimensional structure. We then show that input rankings produced by the activity scores are consistent with rankings produced by the standard metrics.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2017.01.013</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-8320 |
ispartof | Reliability engineering & system safety, 2017-06, Vol.162 (C), p.1-13 |
issn | 0951-8320 1879-0836 |
language | eng |
recordid | cdi_osti_scitechconnect_1414794 |
source | Access via ScienceDirect (Elsevier) |
subjects | Active subspaces Activity score Sensitivity analysis |
title | Global sensitivity metrics from active subspaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20sensitivity%20metrics%20from%20active%20subspaces&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Constantine,%20Paul%20G.&rft.date=2017-06&rft.volume=162&rft.issue=C&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2017.01.013&rft_dat=%3Celsevier_osti_%3ES0951832016303052%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0951832016303052&rfr_iscdi=true |