Electric field effect on chemical and phase equilibria in nano-TiB2–TiO2–TiBO3 system at <650 °C: an in situ time-resolved energy dispersive x-ray diffraction study with an ultrahigh energy synchrotron probe
Nano-TiB2 powder of 58 nm size with TiO2 and TiBO3 as secondary phases was heated with 20 °C to 1% TiB2 unit cell expansion, exceeding zero field thermally induced expansion. The current bursts also induced nonisothermal reaction between TiB2 and TiO2, yielding TiBO3 that is absent with no field. In...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2017-01, Vol.32 (2), p.482-494 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494 |
---|---|
container_issue | 2 |
container_start_page | 482 |
container_title | Journal of materials research |
container_volume | 32 |
creator | Özdemir, Tevfik E. Akdoğan, Enver Koray Şavklıyıldız, İlyas Biçer, Hülya Örnek, Metin Zhong, Zhong Tsakalakos, Thomas |
description | Nano-TiB2 powder of 58 nm size with TiO2 and TiBO3 as secondary phases was heated with 20 °C to 1% TiB2 unit cell expansion, exceeding zero field thermally induced expansion. The current bursts also induced nonisothermal reaction between TiB2 and TiO2, yielding TiBO3 that is absent with no field. Increase from 16 to 40 V/cm shifts the TiB2 → TiBO3 reaction forward, decreases T
onset but increases reaction rate. Analysis using Van’t Hoff relation, including electrochemical effects, precluded possibility of appreciable Joule heating, which was supported with adiabatic internal temperature calculations. The observed low temperature oxidation of TiB2 to TiBO3 that is electrochemically driven and is mediated by the TiO2 solid electrolyte. |
doi_str_mv | 10.1557/jmr.2016.466 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1413927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2016_466</cupid><sourcerecordid>4319598631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2396-44920e20803b8825a601f55077487770b9aea28e379563ef7f838d3328d6f7633</originalsourceid><addsrcrecordid>eNqFkU2O1DAQhSMEEs0MOw5gwTqN4_8gNkxrYJBG6k2zjtxOueNW4vTYzkDvuAMX4QycgRPMScZRQGLHqlTW956f6hXFqwqvK87l2-MQ1gRXYs2EeFKsCGas5JSIp8UKK8VKUlfsefEixiPGFceSrYrf1z2YFJxB1kHfIrA272j0yHQwOKN7pH2LTp2OgOBucr3bB6eR88hrP5Y7d0Uevv_Yue0yrrYUxXNMMCCd0HvBMfr1c_Mum8yS6NKEkhugDBDH_h7yhx7C4YxaF08QorsH9K0Men6wNmiTXI4S09Se0VeXutln6lPQnTt0f7Xx7E0XxhQyegrjHi6LZ1b3EV7-mRfFl4_Xu81Nebv99Hnz4bY0hNaiZKwmGAhWmO6VIlwLXFme7yKZklLifa1BEwVU1lxQsNIqqlpKiWqFlYLSi-L14jvG5JpoXALTmdH7fMKmYhWticzQmwXK0e4miKk5jlPwOVdTKclxTTHnmSoXKp6C8wcI_1C4mdttcrvN3G6T2838euGNHnIh7QH-I3gEO1qqtQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875093055</pqid></control><display><type>article</type><title>Electric field effect on chemical and phase equilibria in nano-TiB2–TiO2–TiBO3 system at <650 °C: an in situ time-resolved energy dispersive x-ray diffraction study with an ultrahigh energy synchrotron probe</title><source>Cambridge Journals</source><source>SpringerNature Journals</source><creator>Özdemir, Tevfik E. ; Akdoğan, Enver Koray ; Şavklıyıldız, İlyas ; Biçer, Hülya ; Örnek, Metin ; Zhong, Zhong ; Tsakalakos, Thomas</creator><creatorcontrib>Özdemir, Tevfik E. ; Akdoğan, Enver Koray ; Şavklıyıldız, İlyas ; Biçer, Hülya ; Örnek, Metin ; Zhong, Zhong ; Tsakalakos, Thomas ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Nano-TiB2 powder of 58 nm size with TiO2 and TiBO3 as secondary phases was heated with 20 °C to <650 °C in argon while applying an electric field. The powder became conductive at 520 and 305 °C (T
onset) for 16 and 40 V/cm, respectively, at which point current bursts of 4.5 and 10.0 A (peak value) were observed. Current bursts were accompanied by >1% TiB2 unit cell expansion, exceeding zero field thermally induced expansion. The current bursts also induced nonisothermal reaction between TiB2 and TiO2, yielding TiBO3 that is absent with no field. Increase from 16 to 40 V/cm shifts the TiB2 → TiBO3 reaction forward, decreases T
onset but increases reaction rate. Analysis using Van’t Hoff relation, including electrochemical effects, precluded possibility of appreciable Joule heating, which was supported with adiabatic internal temperature calculations. The observed low temperature oxidation of TiB2 to TiBO3 that is electrochemically driven and is mediated by the TiO2 solid electrolyte.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2016.466</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Aluminum ; Applied and Technical Physics ; Biomaterials ; Ceramics ; Electric fields ; Equilibrium ; Grain boundaries ; Grain growth ; High temperature ; Hot pressing ; Inorganic Chemistry ; Laboratories ; Materials Engineering ; Materials research ; MATERIALS SCIENCE ; Nanotechnology ; Oxidation ; phase transformation ; Radiation ; Sintering</subject><ispartof>Journal of materials research, 2017-01, Vol.32 (2), p.482-494</ispartof><rights>Copyright © Materials Research Society 2016</rights><rights>The Materials Research Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2396-44920e20803b8825a601f55077487770b9aea28e379563ef7f838d3328d6f7633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2016.466$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291416004660/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,315,781,785,886,27929,27930,41493,42562,51324,55633</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1413927$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Özdemir, Tevfik E.</creatorcontrib><creatorcontrib>Akdoğan, Enver Koray</creatorcontrib><creatorcontrib>Şavklıyıldız, İlyas</creatorcontrib><creatorcontrib>Biçer, Hülya</creatorcontrib><creatorcontrib>Örnek, Metin</creatorcontrib><creatorcontrib>Zhong, Zhong</creatorcontrib><creatorcontrib>Tsakalakos, Thomas</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Electric field effect on chemical and phase equilibria in nano-TiB2–TiO2–TiBO3 system at <650 °C: an in situ time-resolved energy dispersive x-ray diffraction study with an ultrahigh energy synchrotron probe</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Nano-TiB2 powder of 58 nm size with TiO2 and TiBO3 as secondary phases was heated with 20 °C to <650 °C in argon while applying an electric field. The powder became conductive at 520 and 305 °C (T
onset) for 16 and 40 V/cm, respectively, at which point current bursts of 4.5 and 10.0 A (peak value) were observed. Current bursts were accompanied by >1% TiB2 unit cell expansion, exceeding zero field thermally induced expansion. The current bursts also induced nonisothermal reaction between TiB2 and TiO2, yielding TiBO3 that is absent with no field. Increase from 16 to 40 V/cm shifts the TiB2 → TiBO3 reaction forward, decreases T
onset but increases reaction rate. Analysis using Van’t Hoff relation, including electrochemical effects, precluded possibility of appreciable Joule heating, which was supported with adiabatic internal temperature calculations. The observed low temperature oxidation of TiB2 to TiBO3 that is electrochemically driven and is mediated by the TiO2 solid electrolyte.</description><subject>Aluminum</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Ceramics</subject><subject>Electric fields</subject><subject>Equilibrium</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>High temperature</subject><subject>Hot pressing</subject><subject>Inorganic Chemistry</subject><subject>Laboratories</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>MATERIALS SCIENCE</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>phase transformation</subject><subject>Radiation</subject><subject>Sintering</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkU2O1DAQhSMEEs0MOw5gwTqN4_8gNkxrYJBG6k2zjtxOueNW4vTYzkDvuAMX4QycgRPMScZRQGLHqlTW956f6hXFqwqvK87l2-MQ1gRXYs2EeFKsCGas5JSIp8UKK8VKUlfsefEixiPGFceSrYrf1z2YFJxB1kHfIrA272j0yHQwOKN7pH2LTp2OgOBucr3bB6eR88hrP5Y7d0Uevv_Yue0yrrYUxXNMMCCd0HvBMfr1c_Mum8yS6NKEkhugDBDH_h7yhx7C4YxaF08QorsH9K0Men6wNmiTXI4S09Se0VeXutln6lPQnTt0f7Xx7E0XxhQyegrjHi6LZ1b3EV7-mRfFl4_Xu81Nebv99Hnz4bY0hNaiZKwmGAhWmO6VIlwLXFme7yKZklLifa1BEwVU1lxQsNIqqlpKiWqFlYLSi-L14jvG5JpoXALTmdH7fMKmYhWticzQmwXK0e4miKk5jlPwOVdTKclxTTHnmSoXKp6C8wcI_1C4mdttcrvN3G6T2838euGNHnIh7QH-I3gEO1qqtQ</recordid><startdate>20170127</startdate><enddate>20170127</enddate><creator>Özdemir, Tevfik E.</creator><creator>Akdoğan, Enver Koray</creator><creator>Şavklıyıldız, İlyas</creator><creator>Biçer, Hülya</creator><creator>Örnek, Metin</creator><creator>Zhong, Zhong</creator><creator>Tsakalakos, Thomas</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Materials Research Society</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170127</creationdate><title>Electric field effect on chemical and phase equilibria in nano-TiB2–TiO2–TiBO3 system at <650 °C: an in situ time-resolved energy dispersive x-ray diffraction study with an ultrahigh energy synchrotron probe</title><author>Özdemir, Tevfik E. ; Akdoğan, Enver Koray ; Şavklıyıldız, İlyas ; Biçer, Hülya ; Örnek, Metin ; Zhong, Zhong ; Tsakalakos, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2396-44920e20803b8825a601f55077487770b9aea28e379563ef7f838d3328d6f7633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Ceramics</topic><topic>Electric fields</topic><topic>Equilibrium</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>High temperature</topic><topic>Hot pressing</topic><topic>Inorganic Chemistry</topic><topic>Laboratories</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>MATERIALS SCIENCE</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>phase transformation</topic><topic>Radiation</topic><topic>Sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Özdemir, Tevfik E.</creatorcontrib><creatorcontrib>Akdoğan, Enver Koray</creatorcontrib><creatorcontrib>Şavklıyıldız, İlyas</creatorcontrib><creatorcontrib>Biçer, Hülya</creatorcontrib><creatorcontrib>Örnek, Metin</creatorcontrib><creatorcontrib>Zhong, Zhong</creatorcontrib><creatorcontrib>Tsakalakos, Thomas</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Özdemir, Tevfik E.</au><au>Akdoğan, Enver Koray</au><au>Şavklıyıldız, İlyas</au><au>Biçer, Hülya</au><au>Örnek, Metin</au><au>Zhong, Zhong</au><au>Tsakalakos, Thomas</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric field effect on chemical and phase equilibria in nano-TiB2–TiO2–TiBO3 system at <650 °C: an in situ time-resolved energy dispersive x-ray diffraction study with an ultrahigh energy synchrotron probe</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2017-01-27</date><risdate>2017</risdate><volume>32</volume><issue>2</issue><spage>482</spage><epage>494</epage><pages>482-494</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Nano-TiB2 powder of 58 nm size with TiO2 and TiBO3 as secondary phases was heated with 20 °C to <650 °C in argon while applying an electric field. The powder became conductive at 520 and 305 °C (T
onset) for 16 and 40 V/cm, respectively, at which point current bursts of 4.5 and 10.0 A (peak value) were observed. Current bursts were accompanied by >1% TiB2 unit cell expansion, exceeding zero field thermally induced expansion. The current bursts also induced nonisothermal reaction between TiB2 and TiO2, yielding TiBO3 that is absent with no field. Increase from 16 to 40 V/cm shifts the TiB2 → TiBO3 reaction forward, decreases T
onset but increases reaction rate. Analysis using Van’t Hoff relation, including electrochemical effects, precluded possibility of appreciable Joule heating, which was supported with adiabatic internal temperature calculations. The observed low temperature oxidation of TiB2 to TiBO3 that is electrochemically driven and is mediated by the TiO2 solid electrolyte.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2016.466</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2017-01, Vol.32 (2), p.482-494 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_osti_scitechconnect_1413927 |
source | Cambridge Journals; SpringerNature Journals |
subjects | Aluminum Applied and Technical Physics Biomaterials Ceramics Electric fields Equilibrium Grain boundaries Grain growth High temperature Hot pressing Inorganic Chemistry Laboratories Materials Engineering Materials research MATERIALS SCIENCE Nanotechnology Oxidation phase transformation Radiation Sintering |
title | Electric field effect on chemical and phase equilibria in nano-TiB2–TiO2–TiBO3 system at <650 °C: an in situ time-resolved energy dispersive x-ray diffraction study with an ultrahigh energy synchrotron probe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20field%20effect%20on%20chemical%20and%20phase%20equilibria%20in%20nano-TiB2%E2%80%93TiO2%E2%80%93TiBO3%20system%20at%20%3C650%20%C2%B0C:%20an%20in%20situ%20time-resolved%20energy%20dispersive%20x-ray%20diffraction%20study%20with%20an%20ultrahigh%20energy%20synchrotron%20probe&rft.jtitle=Journal%20of%20materials%20research&rft.au=%C3%96zdemir,%20Tevfik%20E.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2017-01-27&rft.volume=32&rft.issue=2&rft.spage=482&rft.epage=494&rft.pages=482-494&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2016.466&rft_dat=%3Cproquest_osti_%3E4319598631%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875093055&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2016_466&rfr_iscdi=true |