Preparation of tetrafluoroethylene from the pyrolysis of pentafluoropropionate salts

Typical yields of TFE obtained from pyrolysis of potassium pentafluoropropionate obtained from the acid-base neutralization method are >98%. [Display omitted] •Equimolar mixtures of tetrafluoroethylene and carbon dioxide were prepared.•Higher yields of TFE than previous literature reports by this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluorine chemistry 2017-04, Vol.196 (C), p.107-116
Hauptverfasser: Hercules, Daniel A., Parrish, Cameron A., Sayler, Todd S., Tice, Kevin T., Williams, Shane M., Lowery, Lauren E., Brady, Michael E., Coward, Robert B., Murphy, Justin A., Hey, Trevyn A., Scavuzzo, Anthony R., Rummler, Lucy M., Burns, Emory G., Matsnev, Andrej V., Fernandez, Richard E., McMillen, Colin D., Thrasher, Joseph S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue C
container_start_page 107
container_title Journal of fluorine chemistry
container_volume 196
creator Hercules, Daniel A.
Parrish, Cameron A.
Sayler, Todd S.
Tice, Kevin T.
Williams, Shane M.
Lowery, Lauren E.
Brady, Michael E.
Coward, Robert B.
Murphy, Justin A.
Hey, Trevyn A.
Scavuzzo, Anthony R.
Rummler, Lucy M.
Burns, Emory G.
Matsnev, Andrej V.
Fernandez, Richard E.
McMillen, Colin D.
Thrasher, Joseph S.
description Typical yields of TFE obtained from pyrolysis of potassium pentafluoropropionate obtained from the acid-base neutralization method are >98%. [Display omitted] •Equimolar mixtures of tetrafluoroethylene and carbon dioxide were prepared.•Higher yields of TFE than previous literature reports by this route are reported.•The method based on the pyrolysis of potassium pentafluoropropionate is preferred.•A higher purity of the tetrafluoroethylene/carbon dioxide mixture was obtained.•This method of preparation of tetrafluoroethylene is suitable for academic institutions. The use of tetrafluoroethylene (TFE) in academic institutions beyond a few millimoles has often been inhibited by the compound's inherent danger and general lack of commercial availability. On the other hand, TFE is prepared industrially on a rather large scale by a number of major fluorochemical companies via the pyrolysis of chlorodifluoromethane at high temperatures, yielding TFE and HCl. For a few years at The University of Alabama and Clemson University, we have been preparing TFE on a 100+-gram scale by the pyrolysis under dynamic vacuum of pentafluoropropionate salts, which can be obtained from the neutralization of pentafluoropropionic acid with a M(OH)n (where M=Li, Na, K, and Cs for n=1 and Mg, Ca, and Ba for n=2). Additionally, potassium pentafluoropropionate can be prepared from the reaction of potassium trimethylsilanolate and ethyl pentafluoropropionate. The pentafluoropropionate salts and their decomposition products have been characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, Fourier transform-infrared (FTIR) spectrophotometry, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDAX), X-ray diffraction (XRD), and single-crystal X-ray crystallography, where applicable. Typical yields of TFE obtained from pyrolysis of potassium pentafluoropropionate obtained from the acid-base neutralization method are >98%, while yields of TFE from the same salt prepared by the silanolate method from ethyl pentafluoropropionate are ca. 80%.
doi_str_mv 10.1016/j.jfluchem.2016.10.004
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1413793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022113916303591</els_id><sourcerecordid>1937398958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-b1a5aad8fa5b473b2dd83b93f5194454979724656cdd6064a91dd1bd4ae9ff3e3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BSm6bk2a9JGdMviCAV2M65AmN7Sl09QkI8y_N6XjWrgQ7uU7h5OD0C3BGcGkfOiz3gwH1cI-y-MejxnG7AytSF3RlNK8PkcrjPM8JYTyS3TlfY8xrnBVr9Du08EknQydHRNrkgDByWhnnYXQHgcYITHO7pPQQjIdnR2OvvMzOcEYTuQUJ-plgMTLIfhrdGHk4OHm9K7R18vzbvOWbj9e3zdP21SxmoS0IbKQUtdGFg2raJNrXdOGU1MQzljBeMWrnJVFqbQucckkJ1qTRjMJ3BgKdI3uFl_rQye86gKoVtlxBBUEYYRWnEbofoFiyu8D-CB6e3BjzCUIpxXlNS_qSJULpZz13oERk-v20h0FwWKuWfTir2Yx1zzfY81R-LgIIX70pwM354BRge7cHEPb7j-LX1yvi4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937398958</pqid></control><display><type>article</type><title>Preparation of tetrafluoroethylene from the pyrolysis of pentafluoropropionate salts</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hercules, Daniel A. ; Parrish, Cameron A. ; Sayler, Todd S. ; Tice, Kevin T. ; Williams, Shane M. ; Lowery, Lauren E. ; Brady, Michael E. ; Coward, Robert B. ; Murphy, Justin A. ; Hey, Trevyn A. ; Scavuzzo, Anthony R. ; Rummler, Lucy M. ; Burns, Emory G. ; Matsnev, Andrej V. ; Fernandez, Richard E. ; McMillen, Colin D. ; Thrasher, Joseph S.</creator><creatorcontrib>Hercules, Daniel A. ; Parrish, Cameron A. ; Sayler, Todd S. ; Tice, Kevin T. ; Williams, Shane M. ; Lowery, Lauren E. ; Brady, Michael E. ; Coward, Robert B. ; Murphy, Justin A. ; Hey, Trevyn A. ; Scavuzzo, Anthony R. ; Rummler, Lucy M. ; Burns, Emory G. ; Matsnev, Andrej V. ; Fernandez, Richard E. ; McMillen, Colin D. ; Thrasher, Joseph S.</creatorcontrib><description>Typical yields of TFE obtained from pyrolysis of potassium pentafluoropropionate obtained from the acid-base neutralization method are &gt;98%. [Display omitted] •Equimolar mixtures of tetrafluoroethylene and carbon dioxide were prepared.•Higher yields of TFE than previous literature reports by this route are reported.•The method based on the pyrolysis of potassium pentafluoropropionate is preferred.•A higher purity of the tetrafluoroethylene/carbon dioxide mixture was obtained.•This method of preparation of tetrafluoroethylene is suitable for academic institutions. The use of tetrafluoroethylene (TFE) in academic institutions beyond a few millimoles has often been inhibited by the compound's inherent danger and general lack of commercial availability. On the other hand, TFE is prepared industrially on a rather large scale by a number of major fluorochemical companies via the pyrolysis of chlorodifluoromethane at high temperatures, yielding TFE and HCl. For a few years at The University of Alabama and Clemson University, we have been preparing TFE on a 100+-gram scale by the pyrolysis under dynamic vacuum of pentafluoropropionate salts, which can be obtained from the neutralization of pentafluoropropionic acid with a M(OH)n (where M=Li, Na, K, and Cs for n=1 and Mg, Ca, and Ba for n=2). Additionally, potassium pentafluoropropionate can be prepared from the reaction of potassium trimethylsilanolate and ethyl pentafluoropropionate. The pentafluoropropionate salts and their decomposition products have been characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, Fourier transform-infrared (FTIR) spectrophotometry, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDAX), X-ray diffraction (XRD), and single-crystal X-ray crystallography, where applicable. Typical yields of TFE obtained from pyrolysis of potassium pentafluoropropionate obtained from the acid-base neutralization method are &gt;98%, while yields of TFE from the same salt prepared by the silanolate method from ethyl pentafluoropropionate are ca. 80%.</description><identifier>ISSN: 0022-1139</identifier><identifier>EISSN: 1873-3328</identifier><identifier>DOI: 10.1016/j.jfluchem.2016.10.004</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Acid-base neutralization ; Calorimetry ; Chemical compounds ; Chlorodifluoromethane ; Crystallography ; Differential scanning calorimetry ; Electron microscopy ; Fourier transforms ; Hazards ; Heat measurement ; Infrared spectrophotometers ; Institutions ; Mass spectrometry ; Mass spectroscopy ; Neutralization ; NMR ; Nuclear magnetic resonance ; Potassium ; Pyrolysis ; Salt ; Salts ; Scanning electron microscopy ; Single crystals ; Spectrophotometry ; Spectroscopy ; Synthesis and pyrolysis of potassium pentafluoropropionate ; Tetrafluoroethylene ; Tetrafluoroethylene (TFE) ; Tetrafluoroethylene-carbon dioxide mixture ; Thermal analysis ; Thermogravimetric analysis ; Use of TFE in academic institutions ; Vacuum ; X-ray crystallography ; X-ray diffraction</subject><ispartof>Journal of fluorine chemistry, 2017-04, Vol.196 (C), p.107-116</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-b1a5aad8fa5b473b2dd83b93f5194454979724656cdd6064a91dd1bd4ae9ff3e3</citedby><cites>FETCH-LOGICAL-c481t-b1a5aad8fa5b473b2dd83b93f5194454979724656cdd6064a91dd1bd4ae9ff3e3</cites><orcidid>0000-0003-1479-1897 ; 0000000314791897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022113916303591$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1413793$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hercules, Daniel A.</creatorcontrib><creatorcontrib>Parrish, Cameron A.</creatorcontrib><creatorcontrib>Sayler, Todd S.</creatorcontrib><creatorcontrib>Tice, Kevin T.</creatorcontrib><creatorcontrib>Williams, Shane M.</creatorcontrib><creatorcontrib>Lowery, Lauren E.</creatorcontrib><creatorcontrib>Brady, Michael E.</creatorcontrib><creatorcontrib>Coward, Robert B.</creatorcontrib><creatorcontrib>Murphy, Justin A.</creatorcontrib><creatorcontrib>Hey, Trevyn A.</creatorcontrib><creatorcontrib>Scavuzzo, Anthony R.</creatorcontrib><creatorcontrib>Rummler, Lucy M.</creatorcontrib><creatorcontrib>Burns, Emory G.</creatorcontrib><creatorcontrib>Matsnev, Andrej V.</creatorcontrib><creatorcontrib>Fernandez, Richard E.</creatorcontrib><creatorcontrib>McMillen, Colin D.</creatorcontrib><creatorcontrib>Thrasher, Joseph S.</creatorcontrib><title>Preparation of tetrafluoroethylene from the pyrolysis of pentafluoropropionate salts</title><title>Journal of fluorine chemistry</title><description>Typical yields of TFE obtained from pyrolysis of potassium pentafluoropropionate obtained from the acid-base neutralization method are &gt;98%. [Display omitted] •Equimolar mixtures of tetrafluoroethylene and carbon dioxide were prepared.•Higher yields of TFE than previous literature reports by this route are reported.•The method based on the pyrolysis of potassium pentafluoropropionate is preferred.•A higher purity of the tetrafluoroethylene/carbon dioxide mixture was obtained.•This method of preparation of tetrafluoroethylene is suitable for academic institutions. The use of tetrafluoroethylene (TFE) in academic institutions beyond a few millimoles has often been inhibited by the compound's inherent danger and general lack of commercial availability. On the other hand, TFE is prepared industrially on a rather large scale by a number of major fluorochemical companies via the pyrolysis of chlorodifluoromethane at high temperatures, yielding TFE and HCl. For a few years at The University of Alabama and Clemson University, we have been preparing TFE on a 100+-gram scale by the pyrolysis under dynamic vacuum of pentafluoropropionate salts, which can be obtained from the neutralization of pentafluoropropionic acid with a M(OH)n (where M=Li, Na, K, and Cs for n=1 and Mg, Ca, and Ba for n=2). Additionally, potassium pentafluoropropionate can be prepared from the reaction of potassium trimethylsilanolate and ethyl pentafluoropropionate. The pentafluoropropionate salts and their decomposition products have been characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, Fourier transform-infrared (FTIR) spectrophotometry, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDAX), X-ray diffraction (XRD), and single-crystal X-ray crystallography, where applicable. Typical yields of TFE obtained from pyrolysis of potassium pentafluoropropionate obtained from the acid-base neutralization method are &gt;98%, while yields of TFE from the same salt prepared by the silanolate method from ethyl pentafluoropropionate are ca. 80%.</description><subject>Acid-base neutralization</subject><subject>Calorimetry</subject><subject>Chemical compounds</subject><subject>Chlorodifluoromethane</subject><subject>Crystallography</subject><subject>Differential scanning calorimetry</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Hazards</subject><subject>Heat measurement</subject><subject>Infrared spectrophotometers</subject><subject>Institutions</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Neutralization</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Potassium</subject><subject>Pyrolysis</subject><subject>Salt</subject><subject>Salts</subject><subject>Scanning electron microscopy</subject><subject>Single crystals</subject><subject>Spectrophotometry</subject><subject>Spectroscopy</subject><subject>Synthesis and pyrolysis of potassium pentafluoropropionate</subject><subject>Tetrafluoroethylene</subject><subject>Tetrafluoroethylene (TFE)</subject><subject>Tetrafluoroethylene-carbon dioxide mixture</subject><subject>Thermal analysis</subject><subject>Thermogravimetric analysis</subject><subject>Use of TFE in academic institutions</subject><subject>Vacuum</subject><subject>X-ray crystallography</subject><subject>X-ray diffraction</subject><issn>0022-1139</issn><issn>1873-3328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BSm6bk2a9JGdMviCAV2M65AmN7Sl09QkI8y_N6XjWrgQ7uU7h5OD0C3BGcGkfOiz3gwH1cI-y-MejxnG7AytSF3RlNK8PkcrjPM8JYTyS3TlfY8xrnBVr9Du08EknQydHRNrkgDByWhnnYXQHgcYITHO7pPQQjIdnR2OvvMzOcEYTuQUJ-plgMTLIfhrdGHk4OHm9K7R18vzbvOWbj9e3zdP21SxmoS0IbKQUtdGFg2raJNrXdOGU1MQzljBeMWrnJVFqbQucckkJ1qTRjMJ3BgKdI3uFl_rQye86gKoVtlxBBUEYYRWnEbofoFiyu8D-CB6e3BjzCUIpxXlNS_qSJULpZz13oERk-v20h0FwWKuWfTir2Yx1zzfY81R-LgIIX70pwM354BRge7cHEPb7j-LX1yvi4Q</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Hercules, Daniel A.</creator><creator>Parrish, Cameron A.</creator><creator>Sayler, Todd S.</creator><creator>Tice, Kevin T.</creator><creator>Williams, Shane M.</creator><creator>Lowery, Lauren E.</creator><creator>Brady, Michael E.</creator><creator>Coward, Robert B.</creator><creator>Murphy, Justin A.</creator><creator>Hey, Trevyn A.</creator><creator>Scavuzzo, Anthony R.</creator><creator>Rummler, Lucy M.</creator><creator>Burns, Emory G.</creator><creator>Matsnev, Andrej V.</creator><creator>Fernandez, Richard E.</creator><creator>McMillen, Colin D.</creator><creator>Thrasher, Joseph S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1479-1897</orcidid><orcidid>https://orcid.org/0000000314791897</orcidid></search><sort><creationdate>20170401</creationdate><title>Preparation of tetrafluoroethylene from the pyrolysis of pentafluoropropionate salts</title><author>Hercules, Daniel A. ; Parrish, Cameron A. ; Sayler, Todd S. ; Tice, Kevin T. ; Williams, Shane M. ; Lowery, Lauren E. ; Brady, Michael E. ; Coward, Robert B. ; Murphy, Justin A. ; Hey, Trevyn A. ; Scavuzzo, Anthony R. ; Rummler, Lucy M. ; Burns, Emory G. ; Matsnev, Andrej V. ; Fernandez, Richard E. ; McMillen, Colin D. ; Thrasher, Joseph S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-b1a5aad8fa5b473b2dd83b93f5194454979724656cdd6064a91dd1bd4ae9ff3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acid-base neutralization</topic><topic>Calorimetry</topic><topic>Chemical compounds</topic><topic>Chlorodifluoromethane</topic><topic>Crystallography</topic><topic>Differential scanning calorimetry</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Hazards</topic><topic>Heat measurement</topic><topic>Infrared spectrophotometers</topic><topic>Institutions</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Neutralization</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Potassium</topic><topic>Pyrolysis</topic><topic>Salt</topic><topic>Salts</topic><topic>Scanning electron microscopy</topic><topic>Single crystals</topic><topic>Spectrophotometry</topic><topic>Spectroscopy</topic><topic>Synthesis and pyrolysis of potassium pentafluoropropionate</topic><topic>Tetrafluoroethylene</topic><topic>Tetrafluoroethylene (TFE)</topic><topic>Tetrafluoroethylene-carbon dioxide mixture</topic><topic>Thermal analysis</topic><topic>Thermogravimetric analysis</topic><topic>Use of TFE in academic institutions</topic><topic>Vacuum</topic><topic>X-ray crystallography</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hercules, Daniel A.</creatorcontrib><creatorcontrib>Parrish, Cameron A.</creatorcontrib><creatorcontrib>Sayler, Todd S.</creatorcontrib><creatorcontrib>Tice, Kevin T.</creatorcontrib><creatorcontrib>Williams, Shane M.</creatorcontrib><creatorcontrib>Lowery, Lauren E.</creatorcontrib><creatorcontrib>Brady, Michael E.</creatorcontrib><creatorcontrib>Coward, Robert B.</creatorcontrib><creatorcontrib>Murphy, Justin A.</creatorcontrib><creatorcontrib>Hey, Trevyn A.</creatorcontrib><creatorcontrib>Scavuzzo, Anthony R.</creatorcontrib><creatorcontrib>Rummler, Lucy M.</creatorcontrib><creatorcontrib>Burns, Emory G.</creatorcontrib><creatorcontrib>Matsnev, Andrej V.</creatorcontrib><creatorcontrib>Fernandez, Richard E.</creatorcontrib><creatorcontrib>McMillen, Colin D.</creatorcontrib><creatorcontrib>Thrasher, Joseph S.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of fluorine chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hercules, Daniel A.</au><au>Parrish, Cameron A.</au><au>Sayler, Todd S.</au><au>Tice, Kevin T.</au><au>Williams, Shane M.</au><au>Lowery, Lauren E.</au><au>Brady, Michael E.</au><au>Coward, Robert B.</au><au>Murphy, Justin A.</au><au>Hey, Trevyn A.</au><au>Scavuzzo, Anthony R.</au><au>Rummler, Lucy M.</au><au>Burns, Emory G.</au><au>Matsnev, Andrej V.</au><au>Fernandez, Richard E.</au><au>McMillen, Colin D.</au><au>Thrasher, Joseph S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of tetrafluoroethylene from the pyrolysis of pentafluoropropionate salts</atitle><jtitle>Journal of fluorine chemistry</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>196</volume><issue>C</issue><spage>107</spage><epage>116</epage><pages>107-116</pages><issn>0022-1139</issn><eissn>1873-3328</eissn><abstract>Typical yields of TFE obtained from pyrolysis of potassium pentafluoropropionate obtained from the acid-base neutralization method are &gt;98%. [Display omitted] •Equimolar mixtures of tetrafluoroethylene and carbon dioxide were prepared.•Higher yields of TFE than previous literature reports by this route are reported.•The method based on the pyrolysis of potassium pentafluoropropionate is preferred.•A higher purity of the tetrafluoroethylene/carbon dioxide mixture was obtained.•This method of preparation of tetrafluoroethylene is suitable for academic institutions. The use of tetrafluoroethylene (TFE) in academic institutions beyond a few millimoles has often been inhibited by the compound's inherent danger and general lack of commercial availability. On the other hand, TFE is prepared industrially on a rather large scale by a number of major fluorochemical companies via the pyrolysis of chlorodifluoromethane at high temperatures, yielding TFE and HCl. For a few years at The University of Alabama and Clemson University, we have been preparing TFE on a 100+-gram scale by the pyrolysis under dynamic vacuum of pentafluoropropionate salts, which can be obtained from the neutralization of pentafluoropropionic acid with a M(OH)n (where M=Li, Na, K, and Cs for n=1 and Mg, Ca, and Ba for n=2). Additionally, potassium pentafluoropropionate can be prepared from the reaction of potassium trimethylsilanolate and ethyl pentafluoropropionate. The pentafluoropropionate salts and their decomposition products have been characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, Fourier transform-infrared (FTIR) spectrophotometry, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDAX), X-ray diffraction (XRD), and single-crystal X-ray crystallography, where applicable. Typical yields of TFE obtained from pyrolysis of potassium pentafluoropropionate obtained from the acid-base neutralization method are &gt;98%, while yields of TFE from the same salt prepared by the silanolate method from ethyl pentafluoropropionate are ca. 80%.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jfluchem.2016.10.004</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1479-1897</orcidid><orcidid>https://orcid.org/0000000314791897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1139
ispartof Journal of fluorine chemistry, 2017-04, Vol.196 (C), p.107-116
issn 0022-1139
1873-3328
language eng
recordid cdi_osti_scitechconnect_1413793
source ScienceDirect Journals (5 years ago - present)
subjects Acid-base neutralization
Calorimetry
Chemical compounds
Chlorodifluoromethane
Crystallography
Differential scanning calorimetry
Electron microscopy
Fourier transforms
Hazards
Heat measurement
Infrared spectrophotometers
Institutions
Mass spectrometry
Mass spectroscopy
Neutralization
NMR
Nuclear magnetic resonance
Potassium
Pyrolysis
Salt
Salts
Scanning electron microscopy
Single crystals
Spectrophotometry
Spectroscopy
Synthesis and pyrolysis of potassium pentafluoropropionate
Tetrafluoroethylene
Tetrafluoroethylene (TFE)
Tetrafluoroethylene-carbon dioxide mixture
Thermal analysis
Thermogravimetric analysis
Use of TFE in academic institutions
Vacuum
X-ray crystallography
X-ray diffraction
title Preparation of tetrafluoroethylene from the pyrolysis of pentafluoropropionate salts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20tetrafluoroethylene%20from%20the%20pyrolysis%20of%20pentafluoropropionate%20salts&rft.jtitle=Journal%20of%20fluorine%20chemistry&rft.au=Hercules,%20Daniel%20A.&rft.date=2017-04-01&rft.volume=196&rft.issue=C&rft.spage=107&rft.epage=116&rft.pages=107-116&rft.issn=0022-1139&rft.eissn=1873-3328&rft_id=info:doi/10.1016/j.jfluchem.2016.10.004&rft_dat=%3Cproquest_osti_%3E1937398958%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937398958&rft_id=info:pmid/&rft_els_id=S0022113916303591&rfr_iscdi=true