Neutrino mass priors for cosmology from random matrices
Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σmν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π(Σmν), we argue that this prior should be motivated by fundamental physical...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-02, Vol.97 (4), Article 043510 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physical review. D |
container_volume | 97 |
creator | Long, Andrew J. Raveri, Marco Hu, Wayne Dodelson, Scott |
description | Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σmν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π(Σmν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix Mν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution over Mν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σmν that we interpret as a Bayesian prior probability π(Σmν). Assuming a basis-invariant probability distribution on Mν, also known as the anarchy hypothesis, we find that π(Σmν) peaks close to the smallest Σmν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π(Σmν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. We present fitting functions for π(Σmν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters. |
doi_str_mv | 10.1103/PhysRevD.97.043510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1413677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126561810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-53b6f8c4090fc196402351bb72cbd81a7c45fea124e0fba882822491fbf5622e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWGr_gKtB11PfSzLJZCn1E4qK6Dpk0sRO6UxqMhX6742Murp3cXjcdwg5R5gjArt6WR_Sq_u6mSs5B84qhCMyoVxCCUDV8X9HOCWzlDaQqwAlESdEPrn9ENs-FJ1JqdjFNsRU-BALG1IXtuHjUPgYuiKafpWjM5m2Lp2RE2-2yc1-c0re727fFg_l8vn-cXG9LC3jYigr1ghfWw4KvEUlONC8r2kktc2qRiMtr7wzSLkD35i6pjWlXKFvfCUodWxKLsa7IQ2tTrYdnF3b0PfODho5MiFlhi5HaBfD596lQW_CPvZ5l6ZIRSWwzp6mhI6UjSGl6LzO33YmHjSC_hGp_0RqJfUokn0DhZlmZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126561810</pqid></control><display><type>article</type><title>Neutrino mass priors for cosmology from random matrices</title><source>American Physical Society Journals</source><creator>Long, Andrew J. ; Raveri, Marco ; Hu, Wayne ; Dodelson, Scott</creator><creatorcontrib>Long, Andrew J. ; Raveri, Marco ; Hu, Wayne ; Dodelson, Scott ; Carnegie Mellon Univ., Pittsburgh, PA (United States) ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) ; Univ. of Chicago, IL (United States)</creatorcontrib><description>Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σmν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π(Σmν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix Mν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution over Mν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σmν that we interpret as a Bayesian prior probability π(Σmν). Assuming a basis-invariant probability distribution on Mν, also known as the anarchy hypothesis, we find that π(Σmν) peaks close to the smallest Σmν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π(Σmν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. We present fitting functions for π(Σmν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.97.043510</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Bayesian analysis ; Bayesian methods ; Conditional probability ; Cosmological parameters ; Cosmology ; Eigenvalues ; Large scale structure of the Universe ; Mass ; Mass matrix ; Neutrinos ; Parameters ; Particle physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Probabilistic inference ; Probability distribution ; Random matrix theory ; Statistical inference</subject><ispartof>Physical review. D, 2018-02, Vol.97 (4), Article 043510</ispartof><rights>Copyright American Physical Society Feb 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-53b6f8c4090fc196402351bb72cbd81a7c45fea124e0fba882822491fbf5622e3</citedby><cites>FETCH-LOGICAL-c346t-53b6f8c4090fc196402351bb72cbd81a7c45fea124e0fba882822491fbf5622e3</cites><orcidid>0000000284463859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1413677$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Andrew J.</creatorcontrib><creatorcontrib>Raveri, Marco</creatorcontrib><creatorcontrib>Hu, Wayne</creatorcontrib><creatorcontrib>Dodelson, Scott</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><title>Neutrino mass priors for cosmology from random matrices</title><title>Physical review. D</title><description>Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σmν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π(Σmν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix Mν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution over Mν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σmν that we interpret as a Bayesian prior probability π(Σmν). Assuming a basis-invariant probability distribution on Mν, also known as the anarchy hypothesis, we find that π(Σmν) peaks close to the smallest Σmν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π(Σmν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. We present fitting functions for π(Σmν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Conditional probability</subject><subject>Cosmological parameters</subject><subject>Cosmology</subject><subject>Eigenvalues</subject><subject>Large scale structure of the Universe</subject><subject>Mass</subject><subject>Mass matrix</subject><subject>Neutrinos</subject><subject>Parameters</subject><subject>Particle physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Probabilistic inference</subject><subject>Probability distribution</subject><subject>Random matrix theory</subject><subject>Statistical inference</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWGr_gKtB11PfSzLJZCn1E4qK6Dpk0sRO6UxqMhX6742Murp3cXjcdwg5R5gjArt6WR_Sq_u6mSs5B84qhCMyoVxCCUDV8X9HOCWzlDaQqwAlESdEPrn9ENs-FJ1JqdjFNsRU-BALG1IXtuHjUPgYuiKafpWjM5m2Lp2RE2-2yc1-c0re727fFg_l8vn-cXG9LC3jYigr1ghfWw4KvEUlONC8r2kktc2qRiMtr7wzSLkD35i6pjWlXKFvfCUodWxKLsa7IQ2tTrYdnF3b0PfODho5MiFlhi5HaBfD596lQW_CPvZ5l6ZIRSWwzp6mhI6UjSGl6LzO33YmHjSC_hGp_0RqJfUokn0DhZlmZg</recordid><startdate>20180213</startdate><enddate>20180213</enddate><creator>Long, Andrew J.</creator><creator>Raveri, Marco</creator><creator>Hu, Wayne</creator><creator>Dodelson, Scott</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000284463859</orcidid></search><sort><creationdate>20180213</creationdate><title>Neutrino mass priors for cosmology from random matrices</title><author>Long, Andrew J. ; Raveri, Marco ; Hu, Wayne ; Dodelson, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-53b6f8c4090fc196402351bb72cbd81a7c45fea124e0fba882822491fbf5622e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Conditional probability</topic><topic>Cosmological parameters</topic><topic>Cosmology</topic><topic>Eigenvalues</topic><topic>Large scale structure of the Universe</topic><topic>Mass</topic><topic>Mass matrix</topic><topic>Neutrinos</topic><topic>Parameters</topic><topic>Particle physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Probabilistic inference</topic><topic>Probability distribution</topic><topic>Random matrix theory</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Andrew J.</creatorcontrib><creatorcontrib>Raveri, Marco</creatorcontrib><creatorcontrib>Hu, Wayne</creatorcontrib><creatorcontrib>Dodelson, Scott</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Andrew J.</au><au>Raveri, Marco</au><au>Hu, Wayne</au><au>Dodelson, Scott</au><aucorp>Carnegie Mellon Univ., Pittsburgh, PA (United States)</aucorp><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><aucorp>Univ. of Chicago, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutrino mass priors for cosmology from random matrices</atitle><jtitle>Physical review. D</jtitle><date>2018-02-13</date><risdate>2018</risdate><volume>97</volume><issue>4</issue><artnum>043510</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σmν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π(Σmν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix Mν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution over Mν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σmν that we interpret as a Bayesian prior probability π(Σmν). Assuming a basis-invariant probability distribution on Mν, also known as the anarchy hypothesis, we find that π(Σmν) peaks close to the smallest Σmν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π(Σmν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. We present fitting functions for π(Σmν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.97.043510</doi><orcidid>https://orcid.org/0000000284463859</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2018-02, Vol.97 (4), Article 043510 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1413677 |
source | American Physical Society Journals |
subjects | ASTRONOMY AND ASTROPHYSICS Bayesian analysis Bayesian methods Conditional probability Cosmological parameters Cosmology Eigenvalues Large scale structure of the Universe Mass Mass matrix Neutrinos Parameters Particle physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Probabilistic inference Probability distribution Random matrix theory Statistical inference |
title | Neutrino mass priors for cosmology from random matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutrino%20mass%20priors%20for%20cosmology%20from%20random%20matrices&rft.jtitle=Physical%20review.%20D&rft.au=Long,%20Andrew%20J.&rft.aucorp=Carnegie%20Mellon%20Univ.,%20Pittsburgh,%20PA%20(United%20States)&rft.date=2018-02-13&rft.volume=97&rft.issue=4&rft.artnum=043510&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.97.043510&rft_dat=%3Cproquest_osti_%3E2126561810%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126561810&rft_id=info:pmid/&rfr_iscdi=true |