Congruent Bifurcation Angles in River Delta and Tributary Channel Networks
We show that distributary channels on river deltas exhibit a mean bifurcation angle that can be understood using theory developed in tributary channel networks. In certain cases, tributary network bifurcation geometries have been demonstrated to be controlled by diffusive groundwater flow feeding in...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2017-11, Vol.44 (22), p.11,427-11,436 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11,436 |
---|---|
container_issue | 22 |
container_start_page | 11,427 |
container_title | Geophysical research letters |
container_volume | 44 |
creator | Coffey, Thomas S. Shaw, John B. |
description | We show that distributary channels on river deltas exhibit a mean bifurcation angle that can be understood using theory developed in tributary channel networks. In certain cases, tributary network bifurcation geometries have been demonstrated to be controlled by diffusive groundwater flow feeding incipient bifurcations, producing a characteristic angle of 72∘. We measured 25 unique distributary bifurcations in an experimental delta and 197 bifurcations in 10 natural deltas, yielding a mean angle of 70.4∘±2.6∘ (95% confidence interval) for field‐scale deltas and a mean angle of 68.3∘±8.7∘ for the experimental delta, consistent with this theoretical prediction. The bifurcation angle holds for small scales relative to channel width length scales. Furthermore, the experimental data show that the mean angle is 72∘ immediately after bifurcation initiation and remains relatively constant over significant time scales. Although distributary networks do not mirror tributary networks perfectly, the similar control and expression of bifurcation angles suggests that additional morphodynamic insight may be gained from further comparative study.
Key Points
Models predicting the bifurcation or confluence angle in tributary channel systems apply to distributary channels in some cases
Tributary and distributary channel networks exhibit congruent mean angles of channel bifurcation
A mean bifurcation angle of 72∘ is found over small length scales but over all investigated time scales |
doi_str_mv | 10.1002/2017GL074873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1410353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979351313</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3945-e1f04bca4fa8433cf27a74364d12921801a501be77b6eb4156960a97a6e534773</originalsourceid><addsrcrecordid>eNp90LFOwzAQBmALgUQpbDyABSuBu9iJk7EEKKAIpKrMlpM6rUtwwHao-vakKgMT093w6fTfT8g5wjUCxDcxoJiWIHgm2AEZYc55lAGIQzICyIc9FukxOfF-DQAMGI7Ic9HZpeu1DfTWNL2rVTCdpRO7bLWnxtKZ-daO3uk2KKrsgs6dqfqg3JYWK2WtbumLDpvOvftTctSo1uuz3zkmbw_38-IxKl-nT8WkjBTLeRJpbIBXteKNyjhjdRMLJThL-QLjPMYMUCWAlRaiSnXFMUnzFFQuVKoTxoVgY3Kxv9v5YKSvTdD1qu6GLHWQyBFYwgZ0uUefrvvqtQ9y3fXODrkk5iJnCTLcqau9ql3nvdON_HTmY3hOIshdpfJvpQOP93xjWr3918rprEzSNE7YD4ExdM0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979351313</pqid></control><display><type>article</type><title>Congruent Bifurcation Angles in River Delta and Tributary Channel Networks</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Coffey, Thomas S. ; Shaw, John B.</creator><creatorcontrib>Coffey, Thomas S. ; Shaw, John B.</creatorcontrib><description>We show that distributary channels on river deltas exhibit a mean bifurcation angle that can be understood using theory developed in tributary channel networks. In certain cases, tributary network bifurcation geometries have been demonstrated to be controlled by diffusive groundwater flow feeding incipient bifurcations, producing a characteristic angle of 72∘. We measured 25 unique distributary bifurcations in an experimental delta and 197 bifurcations in 10 natural deltas, yielding a mean angle of 70.4∘±2.6∘ (95% confidence interval) for field‐scale deltas and a mean angle of 68.3∘±8.7∘ for the experimental delta, consistent with this theoretical prediction. The bifurcation angle holds for small scales relative to channel width length scales. Furthermore, the experimental data show that the mean angle is 72∘ immediately after bifurcation initiation and remains relatively constant over significant time scales. Although distributary networks do not mirror tributary networks perfectly, the similar control and expression of bifurcation angles suggests that additional morphodynamic insight may be gained from further comparative study.
Key Points
Models predicting the bifurcation or confluence angle in tributary channel systems apply to distributary channels in some cases
Tributary and distributary channel networks exhibit congruent mean angles of channel bifurcation
A mean bifurcation angle of 72∘ is found over small length scales but over all investigated time scales</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2017GL074873</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Angles (geometry) ; Bifurcation theory ; channel bifurcations ; Comparative analysis ; Comparative studies ; Confidence intervals ; Deltas ; Geomorphology ; Geophysics ; Groundwater ; Groundwater flow ; Laplacian flow ; mouth bars ; Networks ; River basins ; River channels ; river deltas ; Rivers ; Tributaries</subject><ispartof>Geophysical research letters, 2017-11, Vol.44 (22), p.11,427-11,436</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3945-e1f04bca4fa8433cf27a74364d12921801a501be77b6eb4156960a97a6e534773</citedby><cites>FETCH-LOGICAL-a3945-e1f04bca4fa8433cf27a74364d12921801a501be77b6eb4156960a97a6e534773</cites><orcidid>0000-0001-7819-355X ; 0000-0003-0581-0857 ; 0000000305810857 ; 000000017819355X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017GL074873$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017GL074873$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1410353$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Coffey, Thomas S.</creatorcontrib><creatorcontrib>Shaw, John B.</creatorcontrib><title>Congruent Bifurcation Angles in River Delta and Tributary Channel Networks</title><title>Geophysical research letters</title><description>We show that distributary channels on river deltas exhibit a mean bifurcation angle that can be understood using theory developed in tributary channel networks. In certain cases, tributary network bifurcation geometries have been demonstrated to be controlled by diffusive groundwater flow feeding incipient bifurcations, producing a characteristic angle of 72∘. We measured 25 unique distributary bifurcations in an experimental delta and 197 bifurcations in 10 natural deltas, yielding a mean angle of 70.4∘±2.6∘ (95% confidence interval) for field‐scale deltas and a mean angle of 68.3∘±8.7∘ for the experimental delta, consistent with this theoretical prediction. The bifurcation angle holds for small scales relative to channel width length scales. Furthermore, the experimental data show that the mean angle is 72∘ immediately after bifurcation initiation and remains relatively constant over significant time scales. Although distributary networks do not mirror tributary networks perfectly, the similar control and expression of bifurcation angles suggests that additional morphodynamic insight may be gained from further comparative study.
Key Points
Models predicting the bifurcation or confluence angle in tributary channel systems apply to distributary channels in some cases
Tributary and distributary channel networks exhibit congruent mean angles of channel bifurcation
A mean bifurcation angle of 72∘ is found over small length scales but over all investigated time scales</description><subject>Angles (geometry)</subject><subject>Bifurcation theory</subject><subject>channel bifurcations</subject><subject>Comparative analysis</subject><subject>Comparative studies</subject><subject>Confidence intervals</subject><subject>Deltas</subject><subject>Geomorphology</subject><subject>Geophysics</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Laplacian flow</subject><subject>mouth bars</subject><subject>Networks</subject><subject>River basins</subject><subject>River channels</subject><subject>river deltas</subject><subject>Rivers</subject><subject>Tributaries</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90LFOwzAQBmALgUQpbDyABSuBu9iJk7EEKKAIpKrMlpM6rUtwwHao-vakKgMT093w6fTfT8g5wjUCxDcxoJiWIHgm2AEZYc55lAGIQzICyIc9FukxOfF-DQAMGI7Ic9HZpeu1DfTWNL2rVTCdpRO7bLWnxtKZ-daO3uk2KKrsgs6dqfqg3JYWK2WtbumLDpvOvftTctSo1uuz3zkmbw_38-IxKl-nT8WkjBTLeRJpbIBXteKNyjhjdRMLJThL-QLjPMYMUCWAlRaiSnXFMUnzFFQuVKoTxoVgY3Kxv9v5YKSvTdD1qu6GLHWQyBFYwgZ0uUefrvvqtQ9y3fXODrkk5iJnCTLcqau9ql3nvdON_HTmY3hOIshdpfJvpQOP93xjWr3918rprEzSNE7YD4ExdM0</recordid><startdate>20171128</startdate><enddate>20171128</enddate><creator>Coffey, Thomas S.</creator><creator>Shaw, John B.</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union (AGU)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7819-355X</orcidid><orcidid>https://orcid.org/0000-0003-0581-0857</orcidid><orcidid>https://orcid.org/0000000305810857</orcidid><orcidid>https://orcid.org/000000017819355X</orcidid></search><sort><creationdate>20171128</creationdate><title>Congruent Bifurcation Angles in River Delta and Tributary Channel Networks</title><author>Coffey, Thomas S. ; Shaw, John B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3945-e1f04bca4fa8433cf27a74364d12921801a501be77b6eb4156960a97a6e534773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angles (geometry)</topic><topic>Bifurcation theory</topic><topic>channel bifurcations</topic><topic>Comparative analysis</topic><topic>Comparative studies</topic><topic>Confidence intervals</topic><topic>Deltas</topic><topic>Geomorphology</topic><topic>Geophysics</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Laplacian flow</topic><topic>mouth bars</topic><topic>Networks</topic><topic>River basins</topic><topic>River channels</topic><topic>river deltas</topic><topic>Rivers</topic><topic>Tributaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coffey, Thomas S.</creatorcontrib><creatorcontrib>Shaw, John B.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coffey, Thomas S.</au><au>Shaw, John B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Congruent Bifurcation Angles in River Delta and Tributary Channel Networks</atitle><jtitle>Geophysical research letters</jtitle><date>2017-11-28</date><risdate>2017</risdate><volume>44</volume><issue>22</issue><spage>11,427</spage><epage>11,436</epage><pages>11,427-11,436</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We show that distributary channels on river deltas exhibit a mean bifurcation angle that can be understood using theory developed in tributary channel networks. In certain cases, tributary network bifurcation geometries have been demonstrated to be controlled by diffusive groundwater flow feeding incipient bifurcations, producing a characteristic angle of 72∘. We measured 25 unique distributary bifurcations in an experimental delta and 197 bifurcations in 10 natural deltas, yielding a mean angle of 70.4∘±2.6∘ (95% confidence interval) for field‐scale deltas and a mean angle of 68.3∘±8.7∘ for the experimental delta, consistent with this theoretical prediction. The bifurcation angle holds for small scales relative to channel width length scales. Furthermore, the experimental data show that the mean angle is 72∘ immediately after bifurcation initiation and remains relatively constant over significant time scales. Although distributary networks do not mirror tributary networks perfectly, the similar control and expression of bifurcation angles suggests that additional morphodynamic insight may be gained from further comparative study.
Key Points
Models predicting the bifurcation or confluence angle in tributary channel systems apply to distributary channels in some cases
Tributary and distributary channel networks exhibit congruent mean angles of channel bifurcation
A mean bifurcation angle of 72∘ is found over small length scales but over all investigated time scales</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2017GL074873</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7819-355X</orcidid><orcidid>https://orcid.org/0000-0003-0581-0857</orcidid><orcidid>https://orcid.org/0000000305810857</orcidid><orcidid>https://orcid.org/000000017819355X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2017-11, Vol.44 (22), p.11,427-11,436 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_osti_scitechconnect_1410353 |
source | Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library |
subjects | Angles (geometry) Bifurcation theory channel bifurcations Comparative analysis Comparative studies Confidence intervals Deltas Geomorphology Geophysics Groundwater Groundwater flow Laplacian flow mouth bars Networks River basins River channels river deltas Rivers Tributaries |
title | Congruent Bifurcation Angles in River Delta and Tributary Channel Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Congruent%20Bifurcation%20Angles%20in%20River%20Delta%20and%20Tributary%20Channel%20Networks&rft.jtitle=Geophysical%20research%20letters&rft.au=Coffey,%20Thomas%20S.&rft.date=2017-11-28&rft.volume=44&rft.issue=22&rft.spage=11,427&rft.epage=11,436&rft.pages=11,427-11,436&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2017GL074873&rft_dat=%3Cproquest_osti_%3E1979351313%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979351313&rft_id=info:pmid/&rfr_iscdi=true |