Nuclear structure of bound states of asymmetric dark matter

Models of asymmetric dark matter (ADM) with a sufficiently attractive and long-range force give rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2017-11, Vol.96 (9), Article 096012
Hauptverfasser: Gresham, Moira I., Lou, Hou Keong, Zurek, Kathryn M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physical review. D
container_volume 96
creator Gresham, Moira I.
Lou, Hou Keong
Zurek, Kathryn M.
description Models of asymmetric dark matter (ADM) with a sufficiently attractive and long-range force give rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) nonrelativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an O(1) fraction of the constituent’s mass, significantly larger than expectations in the nonrelativistic case. In a companion paper, we apply our results to the synthesis of ADM nuggets in the early Universe.
doi_str_mv 10.1103/PhysRevD.96.096012
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1409130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125748576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-1f089a158128765444f13a28a7c9bd8800d43e5d430001500b71bba9077849583</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouKz7BTwVPXedSZMmwZOsf2FRET2HNE3Zrtt2TVJhv70tVS8z7w0_hscj5BxhiQjZ1evmEN7c9-1S5UtQOSA9IjPKBKQAVB3_a4RTsghhC4PMQQnEGbl-7u3OGZ-E6Hsbe--SrkqKrm_L4WSiC6M34dA0LvraJqXxn0ljYnT-jJxUZhfc4nfPycf93fvqMV2_PDytbtapzVgeU6xAKoNcIpUi54yxCjNDpRFWFaWUACXLHB_GGIwDFAKLwigQQjLFZTYnF9PfLsRaB1tHZze2a1tno0YGCjMYoMsJ2vvuq3ch6m3X-3bIpSlSLpjkIh8oOlHWdyF4V-m9rxvjDxpBj2XqvzK1yvVUZvYDVt1mQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125748576</pqid></control><display><type>article</type><title>Nuclear structure of bound states of asymmetric dark matter</title><source>American Physical Society Journals</source><creator>Gresham, Moira I. ; Lou, Hou Keong ; Zurek, Kathryn M.</creator><creatorcontrib>Gresham, Moira I. ; Lou, Hou Keong ; Zurek, Kathryn M.</creatorcontrib><description>Models of asymmetric dark matter (ADM) with a sufficiently attractive and long-range force give rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) nonrelativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an O(1) fraction of the constituent’s mass, significantly larger than expectations in the nonrelativistic case. In a companion paper, we apply our results to the synthesis of ADM nuggets in the early Universe.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.96.096012</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Binding energy ; Constituents ; Dark matter ; Descriptions ; Mathematical models ; Mean field theory ; Nuclear structure ; Relativism ; Relativistic effects ; Relativistic theory ; Saturation ; Universe</subject><ispartof>Physical review. D, 2017-11, Vol.96 (9), Article 096012</ispartof><rights>Copyright American Physical Society Nov 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-1f089a158128765444f13a28a7c9bd8800d43e5d430001500b71bba9077849583</citedby><cites>FETCH-LOGICAL-c346t-1f089a158128765444f13a28a7c9bd8800d43e5d430001500b71bba9077849583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1409130$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gresham, Moira I.</creatorcontrib><creatorcontrib>Lou, Hou Keong</creatorcontrib><creatorcontrib>Zurek, Kathryn M.</creatorcontrib><title>Nuclear structure of bound states of asymmetric dark matter</title><title>Physical review. D</title><description>Models of asymmetric dark matter (ADM) with a sufficiently attractive and long-range force give rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) nonrelativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an O(1) fraction of the constituent’s mass, significantly larger than expectations in the nonrelativistic case. In a companion paper, we apply our results to the synthesis of ADM nuggets in the early Universe.</description><subject>Binding energy</subject><subject>Constituents</subject><subject>Dark matter</subject><subject>Descriptions</subject><subject>Mathematical models</subject><subject>Mean field theory</subject><subject>Nuclear structure</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativistic theory</subject><subject>Saturation</subject><subject>Universe</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAQxYMouKz7BTwVPXedSZMmwZOsf2FRET2HNE3Zrtt2TVJhv70tVS8z7w0_hscj5BxhiQjZ1evmEN7c9-1S5UtQOSA9IjPKBKQAVB3_a4RTsghhC4PMQQnEGbl-7u3OGZ-E6Hsbe--SrkqKrm_L4WSiC6M34dA0LvraJqXxn0ljYnT-jJxUZhfc4nfPycf93fvqMV2_PDytbtapzVgeU6xAKoNcIpUi54yxCjNDpRFWFaWUACXLHB_GGIwDFAKLwigQQjLFZTYnF9PfLsRaB1tHZze2a1tno0YGCjMYoMsJ2vvuq3ch6m3X-3bIpSlSLpjkIh8oOlHWdyF4V-m9rxvjDxpBj2XqvzK1yvVUZvYDVt1mQg</recordid><startdate>20171116</startdate><enddate>20171116</enddate><creator>Gresham, Moira I.</creator><creator>Lou, Hou Keong</creator><creator>Zurek, Kathryn M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20171116</creationdate><title>Nuclear structure of bound states of asymmetric dark matter</title><author>Gresham, Moira I. ; Lou, Hou Keong ; Zurek, Kathryn M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-1f089a158128765444f13a28a7c9bd8800d43e5d430001500b71bba9077849583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Binding energy</topic><topic>Constituents</topic><topic>Dark matter</topic><topic>Descriptions</topic><topic>Mathematical models</topic><topic>Mean field theory</topic><topic>Nuclear structure</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativistic theory</topic><topic>Saturation</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gresham, Moira I.</creatorcontrib><creatorcontrib>Lou, Hou Keong</creatorcontrib><creatorcontrib>Zurek, Kathryn M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gresham, Moira I.</au><au>Lou, Hou Keong</au><au>Zurek, Kathryn M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear structure of bound states of asymmetric dark matter</atitle><jtitle>Physical review. D</jtitle><date>2017-11-16</date><risdate>2017</risdate><volume>96</volume><issue>9</issue><artnum>096012</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Models of asymmetric dark matter (ADM) with a sufficiently attractive and long-range force give rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) nonrelativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an O(1) fraction of the constituent’s mass, significantly larger than expectations in the nonrelativistic case. In a companion paper, we apply our results to the synthesis of ADM nuggets in the early Universe.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.96.096012</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2017-11, Vol.96 (9), Article 096012
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1409130
source American Physical Society Journals
subjects Binding energy
Constituents
Dark matter
Descriptions
Mathematical models
Mean field theory
Nuclear structure
Relativism
Relativistic effects
Relativistic theory
Saturation
Universe
title Nuclear structure of bound states of asymmetric dark matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20structure%20of%20bound%20states%20of%20asymmetric%20dark%20matter&rft.jtitle=Physical%20review.%20D&rft.au=Gresham,%20Moira%20I.&rft.date=2017-11-16&rft.volume=96&rft.issue=9&rft.artnum=096012&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.96.096012&rft_dat=%3Cproquest_osti_%3E2125748576%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125748576&rft_id=info:pmid/&rfr_iscdi=true