A density functional theory based approach for predicting melting points of ionic liquids
Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculate me...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2017-02, Vol.19 (5), p.4114-4124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4124 |
---|---|
container_issue | 5 |
container_start_page | 4114 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 19 |
creator | Chen, Lihua Bryantsev, Vyacheslav S |
description | Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculate melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro-containing anions. Continuous progress in predicting crystal structures of organic salts with halide anions will be a key factor for successful prediction of melting points with no prior knowledge of the crystal structure. |
doi_str_mv | 10.1039/c6cp08403f |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1408042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861593642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-d1376fd7d0e86312392a23c265f97095b4f56e7710d0a453abf4fda3995cea6e3</originalsourceid><addsrcrecordid>eNqNkbFOwzAQhi0EolBYeABkMSGkgC9OnGSsIgpIlWCAgSly7DM1SuM0doa-PaEtnZn-O-m7Xzp9hFwBuwfGiwclVMfyhHFzRM4gETwqxvX4MGdiQs69_2aMQQr8lEziHACEEGfkc0Y1tt6GDTVDq4J1rWxoWKLrN7SWHjWVXdc7qZbUuJ52PWo7Yu0XXWGzzc7ZNnjqDB2PraKNXQ9W-wtyYmTj8XKfU_Ixf3wvn6PF69NLOVtEiuc8RBp4JozONMNccIh5EcuYq1ikpshYkdaJSQVmGTDNZJJyWZvEaMmLIlUoBfIpudn1Oh9s5ZUNqJbKtS2qUEHCcpbEI3S7g8ZX1gP6UK2sV9g0skU3-AryPIE4yxj8AxWQFlxsW-92qOqd9z2aquvtSvabClj1q6YqRfm2VTMf4et971CvUB_QPxf8B_87iIs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861593642</pqid></control><display><type>article</type><title>A density functional theory based approach for predicting melting points of ionic liquids</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chen, Lihua ; Bryantsev, Vyacheslav S</creator><creatorcontrib>Chen, Lihua ; Bryantsev, Vyacheslav S ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculate melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro-containing anions. Continuous progress in predicting crystal structures of organic salts with halide anions will be a key factor for successful prediction of melting points with no prior knowledge of the crystal structure.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c6cp08403f</identifier><identifier>PMID: 28111666</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anions ; Crystal structure ; Free energy ; Halides ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Lattices ; Mathematical models ; Melting points ; Solvation</subject><ispartof>Physical chemistry chemical physics : PCCP, 2017-02, Vol.19 (5), p.4114-4124</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-d1376fd7d0e86312392a23c265f97095b4f56e7710d0a453abf4fda3995cea6e3</citedby><cites>FETCH-LOGICAL-c383t-d1376fd7d0e86312392a23c265f97095b4f56e7710d0a453abf4fda3995cea6e3</cites><orcidid>0000000265016594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28111666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1408042$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lihua</creatorcontrib><creatorcontrib>Bryantsev, Vyacheslav S</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>A density functional theory based approach for predicting melting points of ionic liquids</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculate melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro-containing anions. Continuous progress in predicting crystal structures of organic salts with halide anions will be a key factor for successful prediction of melting points with no prior knowledge of the crystal structure.</description><subject>Anions</subject><subject>Crystal structure</subject><subject>Free energy</subject><subject>Halides</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Melting points</subject><subject>Solvation</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkbFOwzAQhi0EolBYeABkMSGkgC9OnGSsIgpIlWCAgSly7DM1SuM0doa-PaEtnZn-O-m7Xzp9hFwBuwfGiwclVMfyhHFzRM4gETwqxvX4MGdiQs69_2aMQQr8lEziHACEEGfkc0Y1tt6GDTVDq4J1rWxoWKLrN7SWHjWVXdc7qZbUuJ52PWo7Yu0XXWGzzc7ZNnjqDB2PraKNXQ9W-wtyYmTj8XKfU_Ixf3wvn6PF69NLOVtEiuc8RBp4JozONMNccIh5EcuYq1ikpshYkdaJSQVmGTDNZJJyWZvEaMmLIlUoBfIpudn1Oh9s5ZUNqJbKtS2qUEHCcpbEI3S7g8ZX1gP6UK2sV9g0skU3-AryPIE4yxj8AxWQFlxsW-92qOqd9z2aquvtSvabClj1q6YqRfm2VTMf4et971CvUB_QPxf8B_87iIs</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Chen, Lihua</creator><creator>Bryantsev, Vyacheslav S</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000265016594</orcidid></search><sort><creationdate>20170201</creationdate><title>A density functional theory based approach for predicting melting points of ionic liquids</title><author>Chen, Lihua ; Bryantsev, Vyacheslav S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-d1376fd7d0e86312392a23c265f97095b4f56e7710d0a453abf4fda3995cea6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anions</topic><topic>Crystal structure</topic><topic>Free energy</topic><topic>Halides</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Melting points</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lihua</creatorcontrib><creatorcontrib>Bryantsev, Vyacheslav S</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lihua</au><au>Bryantsev, Vyacheslav S</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A density functional theory based approach for predicting melting points of ionic liquids</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>19</volume><issue>5</issue><spage>4114</spage><epage>4124</epage><pages>4114-4124</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculate melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro-containing anions. Continuous progress in predicting crystal structures of organic salts with halide anions will be a key factor for successful prediction of melting points with no prior knowledge of the crystal structure.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>28111666</pmid><doi>10.1039/c6cp08403f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000000265016594</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2017-02, Vol.19 (5), p.4114-4124 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_osti_scitechconnect_1408042 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Anions Crystal structure Free energy Halides INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Lattices Mathematical models Melting points Solvation |
title | A density functional theory based approach for predicting melting points of ionic liquids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20density%20functional%20theory%20based%20approach%20for%20predicting%20melting%20points%20of%20ionic%20liquids&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Chen,%20Lihua&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2017-02-01&rft.volume=19&rft.issue=5&rft.spage=4114&rft.epage=4124&rft.pages=4114-4124&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c6cp08403f&rft_dat=%3Cproquest_osti_%3E1861593642%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861593642&rft_id=info:pmid/28111666&rfr_iscdi=true |