Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds
Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel pro...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2017-10, Vol.56 (42), p.12236-12245 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12245 |
---|---|
container_issue | 42 |
container_start_page | 12236 |
container_title | Industrial & engineering chemistry research |
container_volume | 56 |
creator | Kubic, William L Jenkins, Rhodri W Moore, Cameron M Semelsberger, Troy A Sutton, Andrew D |
description | Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods. |
doi_str_mv | 10.1021/acs.iecr.7b02753 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1407892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h15266889</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-1d24eb0f0003bdf0c004e1e16931509dcbd8b17f50e8516f4f6d2536e2a39f523</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEuXnztHiTMo6iRP3CBVQJGgvcI4ce926ULuyHUGfgxcmbbhympX2m13NEHLFYMwgZ7dSxbFFFcZ1C3nNiyMyYjyHjEPJj8kIhBAZF4KfkrMY1wDAeVmOyM9dSNZYZeUnnWMXDpK-fPig9zKipk_Bd1s69S4F23bJekdfMa28psYH-hCT3chk3ZJOMUmHVDpNF-owzrtNiyFSb-hsp4NXMrTexQH53i3RydR_WISldFb1PzZb3zkdL8iJkZ8RL__0nLw_PrxNZ9nL4ul5eveSyUJUKWM6L7EF02cpWm1AAZTIkFWTgnGYaNVq0bLacEDBWWVKU-mcFxXmspgYnhfn5Hq46_sUTVQ2oVop7xyq1LASajHZQzBAKvgYA5pmG_rIYdcwaPbNN33zzb755q_53nIzWPabte-C61P8j_8CDHWJzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds</title><source>American Chemical Society Journals</source><creator>Kubic, William L ; Jenkins, Rhodri W ; Moore, Cameron M ; Semelsberger, Troy A ; Sutton, Andrew D</creator><creatorcontrib>Kubic, William L ; Jenkins, Rhodri W ; Moore, Cameron M ; Semelsberger, Troy A ; Sutton, Andrew D ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.7b02753</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy Sciences ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Organic Chemistry</subject><ispartof>Industrial & engineering chemistry research, 2017-10, Vol.56 (42), p.12236-12245</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-1d24eb0f0003bdf0c004e1e16931509dcbd8b17f50e8516f4f6d2536e2a39f523</citedby><cites>FETCH-LOGICAL-a386t-1d24eb0f0003bdf0c004e1e16931509dcbd8b17f50e8516f4f6d2536e2a39f523</cites><orcidid>0000-0002-5944-7064 ; 0000000259447064 ; 0000000276836053 ; 0000000188277298 ; 0000000179841715 ; 0000000179416591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.7b02753$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.7b02753$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1407892$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubic, William L</creatorcontrib><creatorcontrib>Jenkins, Rhodri W</creatorcontrib><creatorcontrib>Moore, Cameron M</creatorcontrib><creatorcontrib>Semelsberger, Troy A</creatorcontrib><creatorcontrib>Sutton, Andrew D</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.</description><subject>Energy Sciences</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Organic Chemistry</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEuXnztHiTMo6iRP3CBVQJGgvcI4ce926ULuyHUGfgxcmbbhympX2m13NEHLFYMwgZ7dSxbFFFcZ1C3nNiyMyYjyHjEPJj8kIhBAZF4KfkrMY1wDAeVmOyM9dSNZYZeUnnWMXDpK-fPig9zKipk_Bd1s69S4F23bJekdfMa28psYH-hCT3chk3ZJOMUmHVDpNF-owzrtNiyFSb-hsp4NXMrTexQH53i3RydR_WISldFb1PzZb3zkdL8iJkZ8RL__0nLw_PrxNZ9nL4ul5eveSyUJUKWM6L7EF02cpWm1AAZTIkFWTgnGYaNVq0bLacEDBWWVKU-mcFxXmspgYnhfn5Hq46_sUTVQ2oVop7xyq1LASajHZQzBAKvgYA5pmG_rIYdcwaPbNN33zzb755q_53nIzWPabte-C61P8j_8CDHWJzA</recordid><startdate>20171025</startdate><enddate>20171025</enddate><creator>Kubic, William L</creator><creator>Jenkins, Rhodri W</creator><creator>Moore, Cameron M</creator><creator>Semelsberger, Troy A</creator><creator>Sutton, Andrew D</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5944-7064</orcidid><orcidid>https://orcid.org/0000000259447064</orcidid><orcidid>https://orcid.org/0000000276836053</orcidid><orcidid>https://orcid.org/0000000188277298</orcidid><orcidid>https://orcid.org/0000000179841715</orcidid><orcidid>https://orcid.org/0000000179416591</orcidid></search><sort><creationdate>20171025</creationdate><title>Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds</title><author>Kubic, William L ; Jenkins, Rhodri W ; Moore, Cameron M ; Semelsberger, Troy A ; Sutton, Andrew D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-1d24eb0f0003bdf0c004e1e16931509dcbd8b17f50e8516f4f6d2536e2a39f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Energy Sciences</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Organic Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubic, William L</creatorcontrib><creatorcontrib>Jenkins, Rhodri W</creatorcontrib><creatorcontrib>Moore, Cameron M</creatorcontrib><creatorcontrib>Semelsberger, Troy A</creatorcontrib><creatorcontrib>Sutton, Andrew D</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubic, William L</au><au>Jenkins, Rhodri W</au><au>Moore, Cameron M</au><au>Semelsberger, Troy A</au><au>Sutton, Andrew D</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2017-10-25</date><risdate>2017</risdate><volume>56</volume><issue>42</issue><spage>12236</spage><epage>12245</epage><pages>12236-12245</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.7b02753</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5944-7064</orcidid><orcidid>https://orcid.org/0000000259447064</orcidid><orcidid>https://orcid.org/0000000276836053</orcidid><orcidid>https://orcid.org/0000000188277298</orcidid><orcidid>https://orcid.org/0000000179841715</orcidid><orcidid>https://orcid.org/0000000179416591</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2017-10, Vol.56 (42), p.12236-12245 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_osti_scitechconnect_1407892 |
source | American Chemical Society Journals |
subjects | Energy Sciences INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Organic Chemistry |
title | Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20Based%20Group%20Contribution%20Method%20for%20Estimating%20Cetane%20and%20Octane%20Numbers%20of%20Hydrocarbons%20and%20Oxygenated%20Organic%20Compounds&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kubic,%20William%20L&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2017-10-25&rft.volume=56&rft.issue=42&rft.spage=12236&rft.epage=12245&rft.pages=12236-12245&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.7b02753&rft_dat=%3Cacs_osti_%3Eh15266889%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |