Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds

Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2017-10, Vol.56 (42), p.12236-12245
Hauptverfasser: Kubic, William L, Jenkins, Rhodri W, Moore, Cameron M, Semelsberger, Troy A, Sutton, Andrew D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12245
container_issue 42
container_start_page 12236
container_title Industrial & engineering chemistry research
container_volume 56
creator Kubic, William L
Jenkins, Rhodri W
Moore, Cameron M
Semelsberger, Troy A
Sutton, Andrew D
description Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.
doi_str_mv 10.1021/acs.iecr.7b02753
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1407892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h15266889</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-1d24eb0f0003bdf0c004e1e16931509dcbd8b17f50e8516f4f6d2536e2a39f523</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEuXnztHiTMo6iRP3CBVQJGgvcI4ce926ULuyHUGfgxcmbbhympX2m13NEHLFYMwgZ7dSxbFFFcZ1C3nNiyMyYjyHjEPJj8kIhBAZF4KfkrMY1wDAeVmOyM9dSNZYZeUnnWMXDpK-fPig9zKipk_Bd1s69S4F23bJekdfMa28psYH-hCT3chk3ZJOMUmHVDpNF-owzrtNiyFSb-hsp4NXMrTexQH53i3RydR_WISldFb1PzZb3zkdL8iJkZ8RL__0nLw_PrxNZ9nL4ul5eveSyUJUKWM6L7EF02cpWm1AAZTIkFWTgnGYaNVq0bLacEDBWWVKU-mcFxXmspgYnhfn5Hq46_sUTVQ2oVop7xyq1LASajHZQzBAKvgYA5pmG_rIYdcwaPbNN33zzb755q_53nIzWPabte-C61P8j_8CDHWJzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds</title><source>American Chemical Society Journals</source><creator>Kubic, William L ; Jenkins, Rhodri W ; Moore, Cameron M ; Semelsberger, Troy A ; Sutton, Andrew D</creator><creatorcontrib>Kubic, William L ; Jenkins, Rhodri W ; Moore, Cameron M ; Semelsberger, Troy A ; Sutton, Andrew D ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.7b02753</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy Sciences ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Organic Chemistry</subject><ispartof>Industrial &amp; engineering chemistry research, 2017-10, Vol.56 (42), p.12236-12245</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-1d24eb0f0003bdf0c004e1e16931509dcbd8b17f50e8516f4f6d2536e2a39f523</citedby><cites>FETCH-LOGICAL-a386t-1d24eb0f0003bdf0c004e1e16931509dcbd8b17f50e8516f4f6d2536e2a39f523</cites><orcidid>0000-0002-5944-7064 ; 0000000259447064 ; 0000000276836053 ; 0000000188277298 ; 0000000179841715 ; 0000000179416591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.7b02753$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.7b02753$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1407892$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubic, William L</creatorcontrib><creatorcontrib>Jenkins, Rhodri W</creatorcontrib><creatorcontrib>Moore, Cameron M</creatorcontrib><creatorcontrib>Semelsberger, Troy A</creatorcontrib><creatorcontrib>Sutton, Andrew D</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.</description><subject>Energy Sciences</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Organic Chemistry</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEuXnztHiTMo6iRP3CBVQJGgvcI4ce926ULuyHUGfgxcmbbhympX2m13NEHLFYMwgZ7dSxbFFFcZ1C3nNiyMyYjyHjEPJj8kIhBAZF4KfkrMY1wDAeVmOyM9dSNZYZeUnnWMXDpK-fPig9zKipk_Bd1s69S4F23bJekdfMa28psYH-hCT3chk3ZJOMUmHVDpNF-owzrtNiyFSb-hsp4NXMrTexQH53i3RydR_WISldFb1PzZb3zkdL8iJkZ8RL__0nLw_PrxNZ9nL4ul5eveSyUJUKWM6L7EF02cpWm1AAZTIkFWTgnGYaNVq0bLacEDBWWVKU-mcFxXmspgYnhfn5Hq46_sUTVQ2oVop7xyq1LASajHZQzBAKvgYA5pmG_rIYdcwaPbNN33zzb755q_53nIzWPabte-C61P8j_8CDHWJzA</recordid><startdate>20171025</startdate><enddate>20171025</enddate><creator>Kubic, William L</creator><creator>Jenkins, Rhodri W</creator><creator>Moore, Cameron M</creator><creator>Semelsberger, Troy A</creator><creator>Sutton, Andrew D</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5944-7064</orcidid><orcidid>https://orcid.org/0000000259447064</orcidid><orcidid>https://orcid.org/0000000276836053</orcidid><orcidid>https://orcid.org/0000000188277298</orcidid><orcidid>https://orcid.org/0000000179841715</orcidid><orcidid>https://orcid.org/0000000179416591</orcidid></search><sort><creationdate>20171025</creationdate><title>Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds</title><author>Kubic, William L ; Jenkins, Rhodri W ; Moore, Cameron M ; Semelsberger, Troy A ; Sutton, Andrew D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-1d24eb0f0003bdf0c004e1e16931509dcbd8b17f50e8516f4f6d2536e2a39f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Energy Sciences</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Organic Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubic, William L</creatorcontrib><creatorcontrib>Jenkins, Rhodri W</creatorcontrib><creatorcontrib>Moore, Cameron M</creatorcontrib><creatorcontrib>Semelsberger, Troy A</creatorcontrib><creatorcontrib>Sutton, Andrew D</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubic, William L</au><au>Jenkins, Rhodri W</au><au>Moore, Cameron M</au><au>Semelsberger, Troy A</au><au>Sutton, Andrew D</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2017-10-25</date><risdate>2017</risdate><volume>56</volume><issue>42</issue><spage>12236</spage><epage>12245</epage><pages>12236-12245</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.7b02753</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5944-7064</orcidid><orcidid>https://orcid.org/0000000259447064</orcidid><orcidid>https://orcid.org/0000000276836053</orcidid><orcidid>https://orcid.org/0000000188277298</orcidid><orcidid>https://orcid.org/0000000179841715</orcidid><orcidid>https://orcid.org/0000000179416591</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2017-10, Vol.56 (42), p.12236-12245
issn 0888-5885
1520-5045
language eng
recordid cdi_osti_scitechconnect_1407892
source American Chemical Society Journals
subjects Energy Sciences
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Organic Chemistry
title Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20Based%20Group%20Contribution%20Method%20for%20Estimating%20Cetane%20and%20Octane%20Numbers%20of%20Hydrocarbons%20and%20Oxygenated%20Organic%20Compounds&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kubic,%20William%20L&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2017-10-25&rft.volume=56&rft.issue=42&rft.spage=12236&rft.epage=12245&rft.pages=12236-12245&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.7b02753&rft_dat=%3Cacs_osti_%3Eh15266889%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true