Correlated In Situ Low‐Frequency Noise and Impedance Spectroscopy Reveal Recombination Dynamics in Organic Solar Cells Using Fullerene and Non‐Fullerene Acceptors
Non‐fullerene acceptors based on perylenediimides (PDIs) have garnered significant interest as an alternative to fullerene acceptors in organic photovoltaics (OPVs), but their charge transport phenomena are not well understood, especially in bulk heterojunctions (BHJs). Here, charge transport and cu...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2017-12, Vol.27 (48), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 48 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 27 |
creator | Luck, Kyle A. Sangwan, Vinod K. Hartnett, Patrick E. Arnold, Heather N. Wasielewski, Michael R. Marks, Tobin J. Hersam, Mark C. |
description | Non‐fullerene acceptors based on perylenediimides (PDIs) have garnered significant interest as an alternative to fullerene acceptors in organic photovoltaics (OPVs), but their charge transport phenomena are not well understood, especially in bulk heterojunctions (BHJs). Here, charge transport and current fluctuations are investigated by performing correlated low‐frequency noise and impedance spectroscopy measurements on two BHJ OPV systems, one employing a fullerene acceptor and the other employing a dimeric PDI acceptor. In the dark, these measurements reveal that PDI‐based OPVs have a greater degree of recombination in comparison to fullerene‐based OPVs. Furthermore, for the first time in organic solar cells, 1/f noise data are fit to the Kleinpenning model to reveal underlying current fluctuations in different transport regimes. Under illumination, 1/f noise increases by approximately four orders of magnitude for the fullerene‐based OPVs and three orders of magnitude for the PDI‐based OPVs. An inverse correlation is also observed between noise spectral density and power conversion efficiency. Overall, these results show that low‐frequency noise spectroscopy is an effective in situ diagnostic tool to assess charge transport in emerging photovoltaic materials, thereby providing quantitative guidance for the design of next‐generation solar cell materials and technologies.
Low‐frequency electronic noise is measured in polymer solar cells with fullerene and non‐fullerene acceptors. Charge carrier lifetimes deduced from impedance spectroscopy enable the noise data to be fit to the Kleinpenning model. The results establish that low‐frequency noise elucidates charge recombination processes that limit power conversion efficiency. This correlated analytical tool provides quantitative guidance to the optimization of emerging photovoltaic materials. |
doi_str_mv | 10.1002/adfm.201703805 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1407815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978596110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4895-b3f53ab73447058374235f68041e60d0572c428a4864ae874738609a3f61f58f3</originalsourceid><addsrcrecordid>eNqFkc9OGzEQxlcVSAXaa89We06w1_bae4wCKUgBpKZIvVmOM0uNvPZib0B76yPwFDwYT4KjRemR04xGv2_-fUXxjeApwbg81ZumnZaYCEwl5p-KI1KRakJxKQ_2OfnzuThO6R5nTFB2VLzMQ4zgdA8bdOnRyvZbtAxPr_-eFxEetuDNgK6DTYC0z0TbwUZ7A2jVgeljSCZ0A_oFj6BdDia0a-t1b4NHZ4PXrTUJWY9u4p321qBVcDqiOTiX0G2y_g4tts5BBD_2vw5-N3lfmxkDXR9i-lIcNtol-PoeT4rbxfnv-cVkefPzcj5bTgyTNZ-sacOpXufLmMBcUsFKyptKYkagwhvMRWlYKTWTFdMgBRNUVrjWtKlIw2VDT4rvY9-QequSsT2YvyZ4n69VhGEhCc_QjxHqYsgvSr26D9vo816K1ELyuiIEZ2o6Uia_KUVoVBdtq-OgCFY7w9TOMLU3LAvqUfBkHQwf0Gp2trj6r30DZRWcWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978596110</pqid></control><display><type>article</type><title>Correlated In Situ Low‐Frequency Noise and Impedance Spectroscopy Reveal Recombination Dynamics in Organic Solar Cells Using Fullerene and Non‐Fullerene Acceptors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Luck, Kyle A. ; Sangwan, Vinod K. ; Hartnett, Patrick E. ; Arnold, Heather N. ; Wasielewski, Michael R. ; Marks, Tobin J. ; Hersam, Mark C.</creator><creatorcontrib>Luck, Kyle A. ; Sangwan, Vinod K. ; Hartnett, Patrick E. ; Arnold, Heather N. ; Wasielewski, Michael R. ; Marks, Tobin J. ; Hersam, Mark C.</creatorcontrib><description>Non‐fullerene acceptors based on perylenediimides (PDIs) have garnered significant interest as an alternative to fullerene acceptors in organic photovoltaics (OPVs), but their charge transport phenomena are not well understood, especially in bulk heterojunctions (BHJs). Here, charge transport and current fluctuations are investigated by performing correlated low‐frequency noise and impedance spectroscopy measurements on two BHJ OPV systems, one employing a fullerene acceptor and the other employing a dimeric PDI acceptor. In the dark, these measurements reveal that PDI‐based OPVs have a greater degree of recombination in comparison to fullerene‐based OPVs. Furthermore, for the first time in organic solar cells, 1/f noise data are fit to the Kleinpenning model to reveal underlying current fluctuations in different transport regimes. Under illumination, 1/f noise increases by approximately four orders of magnitude for the fullerene‐based OPVs and three orders of magnitude for the PDI‐based OPVs. An inverse correlation is also observed between noise spectral density and power conversion efficiency. Overall, these results show that low‐frequency noise spectroscopy is an effective in situ diagnostic tool to assess charge transport in emerging photovoltaic materials, thereby providing quantitative guidance for the design of next‐generation solar cell materials and technologies.
Low‐frequency electronic noise is measured in polymer solar cells with fullerene and non‐fullerene acceptors. Charge carrier lifetimes deduced from impedance spectroscopy enable the noise data to be fit to the Kleinpenning model. The results establish that low‐frequency noise elucidates charge recombination processes that limit power conversion efficiency. This correlated analytical tool provides quantitative guidance to the optimization of emerging photovoltaic materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201703805</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>1/f noise ; alternate acceptors ; Charge transport ; Diagnostic software ; Diagnostic systems ; Energy conversion efficiency ; Fullerenes ; Heterojunctions ; Impedance spectroscopy ; Materials science ; Noise ; organic photovoltaics ; PBDTTT‐EFT ; PC71BM ; Photovoltaic cells ; Solar cells ; Spectrum analysis ; Transport phenomena</subject><ispartof>Advanced functional materials, 2017-12, Vol.27 (48), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4895-b3f53ab73447058374235f68041e60d0572c428a4864ae874738609a3f61f58f3</citedby><cites>FETCH-LOGICAL-c4895-b3f53ab73447058374235f68041e60d0572c428a4864ae874738609a3f61f58f3</cites><orcidid>0000-0003-4120-1426 ; 0000000341201426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201703805$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201703805$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1407815$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Luck, Kyle A.</creatorcontrib><creatorcontrib>Sangwan, Vinod K.</creatorcontrib><creatorcontrib>Hartnett, Patrick E.</creatorcontrib><creatorcontrib>Arnold, Heather N.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><title>Correlated In Situ Low‐Frequency Noise and Impedance Spectroscopy Reveal Recombination Dynamics in Organic Solar Cells Using Fullerene and Non‐Fullerene Acceptors</title><title>Advanced functional materials</title><description>Non‐fullerene acceptors based on perylenediimides (PDIs) have garnered significant interest as an alternative to fullerene acceptors in organic photovoltaics (OPVs), but their charge transport phenomena are not well understood, especially in bulk heterojunctions (BHJs). Here, charge transport and current fluctuations are investigated by performing correlated low‐frequency noise and impedance spectroscopy measurements on two BHJ OPV systems, one employing a fullerene acceptor and the other employing a dimeric PDI acceptor. In the dark, these measurements reveal that PDI‐based OPVs have a greater degree of recombination in comparison to fullerene‐based OPVs. Furthermore, for the first time in organic solar cells, 1/f noise data are fit to the Kleinpenning model to reveal underlying current fluctuations in different transport regimes. Under illumination, 1/f noise increases by approximately four orders of magnitude for the fullerene‐based OPVs and three orders of magnitude for the PDI‐based OPVs. An inverse correlation is also observed between noise spectral density and power conversion efficiency. Overall, these results show that low‐frequency noise spectroscopy is an effective in situ diagnostic tool to assess charge transport in emerging photovoltaic materials, thereby providing quantitative guidance for the design of next‐generation solar cell materials and technologies.
Low‐frequency electronic noise is measured in polymer solar cells with fullerene and non‐fullerene acceptors. Charge carrier lifetimes deduced from impedance spectroscopy enable the noise data to be fit to the Kleinpenning model. The results establish that low‐frequency noise elucidates charge recombination processes that limit power conversion efficiency. This correlated analytical tool provides quantitative guidance to the optimization of emerging photovoltaic materials.</description><subject>1/f noise</subject><subject>alternate acceptors</subject><subject>Charge transport</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Heterojunctions</subject><subject>Impedance spectroscopy</subject><subject>Materials science</subject><subject>Noise</subject><subject>organic photovoltaics</subject><subject>PBDTTT‐EFT</subject><subject>PC71BM</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Spectrum analysis</subject><subject>Transport phenomena</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc9OGzEQxlcVSAXaa89We06w1_bae4wCKUgBpKZIvVmOM0uNvPZib0B76yPwFDwYT4KjRemR04xGv2_-fUXxjeApwbg81ZumnZaYCEwl5p-KI1KRakJxKQ_2OfnzuThO6R5nTFB2VLzMQ4zgdA8bdOnRyvZbtAxPr_-eFxEetuDNgK6DTYC0z0TbwUZ7A2jVgeljSCZ0A_oFj6BdDia0a-t1b4NHZ4PXrTUJWY9u4p321qBVcDqiOTiX0G2y_g4tts5BBD_2vw5-N3lfmxkDXR9i-lIcNtol-PoeT4rbxfnv-cVkefPzcj5bTgyTNZ-sacOpXufLmMBcUsFKyptKYkagwhvMRWlYKTWTFdMgBRNUVrjWtKlIw2VDT4rvY9-QequSsT2YvyZ4n69VhGEhCc_QjxHqYsgvSr26D9vo816K1ELyuiIEZ2o6Uia_KUVoVBdtq-OgCFY7w9TOMLU3LAvqUfBkHQwf0Gp2trj6r30DZRWcWA</recordid><startdate>20171222</startdate><enddate>20171222</enddate><creator>Luck, Kyle A.</creator><creator>Sangwan, Vinod K.</creator><creator>Hartnett, Patrick E.</creator><creator>Arnold, Heather N.</creator><creator>Wasielewski, Michael R.</creator><creator>Marks, Tobin J.</creator><creator>Hersam, Mark C.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4120-1426</orcidid><orcidid>https://orcid.org/0000000341201426</orcidid></search><sort><creationdate>20171222</creationdate><title>Correlated In Situ Low‐Frequency Noise and Impedance Spectroscopy Reveal Recombination Dynamics in Organic Solar Cells Using Fullerene and Non‐Fullerene Acceptors</title><author>Luck, Kyle A. ; Sangwan, Vinod K. ; Hartnett, Patrick E. ; Arnold, Heather N. ; Wasielewski, Michael R. ; Marks, Tobin J. ; Hersam, Mark C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4895-b3f53ab73447058374235f68041e60d0572c428a4864ae874738609a3f61f58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>1/f noise</topic><topic>alternate acceptors</topic><topic>Charge transport</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Heterojunctions</topic><topic>Impedance spectroscopy</topic><topic>Materials science</topic><topic>Noise</topic><topic>organic photovoltaics</topic><topic>PBDTTT‐EFT</topic><topic>PC71BM</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Spectrum analysis</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luck, Kyle A.</creatorcontrib><creatorcontrib>Sangwan, Vinod K.</creatorcontrib><creatorcontrib>Hartnett, Patrick E.</creatorcontrib><creatorcontrib>Arnold, Heather N.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luck, Kyle A.</au><au>Sangwan, Vinod K.</au><au>Hartnett, Patrick E.</au><au>Arnold, Heather N.</au><au>Wasielewski, Michael R.</au><au>Marks, Tobin J.</au><au>Hersam, Mark C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlated In Situ Low‐Frequency Noise and Impedance Spectroscopy Reveal Recombination Dynamics in Organic Solar Cells Using Fullerene and Non‐Fullerene Acceptors</atitle><jtitle>Advanced functional materials</jtitle><date>2017-12-22</date><risdate>2017</risdate><volume>27</volume><issue>48</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Non‐fullerene acceptors based on perylenediimides (PDIs) have garnered significant interest as an alternative to fullerene acceptors in organic photovoltaics (OPVs), but their charge transport phenomena are not well understood, especially in bulk heterojunctions (BHJs). Here, charge transport and current fluctuations are investigated by performing correlated low‐frequency noise and impedance spectroscopy measurements on two BHJ OPV systems, one employing a fullerene acceptor and the other employing a dimeric PDI acceptor. In the dark, these measurements reveal that PDI‐based OPVs have a greater degree of recombination in comparison to fullerene‐based OPVs. Furthermore, for the first time in organic solar cells, 1/f noise data are fit to the Kleinpenning model to reveal underlying current fluctuations in different transport regimes. Under illumination, 1/f noise increases by approximately four orders of magnitude for the fullerene‐based OPVs and three orders of magnitude for the PDI‐based OPVs. An inverse correlation is also observed between noise spectral density and power conversion efficiency. Overall, these results show that low‐frequency noise spectroscopy is an effective in situ diagnostic tool to assess charge transport in emerging photovoltaic materials, thereby providing quantitative guidance for the design of next‐generation solar cell materials and technologies.
Low‐frequency electronic noise is measured in polymer solar cells with fullerene and non‐fullerene acceptors. Charge carrier lifetimes deduced from impedance spectroscopy enable the noise data to be fit to the Kleinpenning model. The results establish that low‐frequency noise elucidates charge recombination processes that limit power conversion efficiency. This correlated analytical tool provides quantitative guidance to the optimization of emerging photovoltaic materials.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201703805</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4120-1426</orcidid><orcidid>https://orcid.org/0000000341201426</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2017-12, Vol.27 (48), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_osti_scitechconnect_1407815 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 1/f noise alternate acceptors Charge transport Diagnostic software Diagnostic systems Energy conversion efficiency Fullerenes Heterojunctions Impedance spectroscopy Materials science Noise organic photovoltaics PBDTTT‐EFT PC71BM Photovoltaic cells Solar cells Spectrum analysis Transport phenomena |
title | Correlated In Situ Low‐Frequency Noise and Impedance Spectroscopy Reveal Recombination Dynamics in Organic Solar Cells Using Fullerene and Non‐Fullerene Acceptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlated%20In%20Situ%20Low%E2%80%90Frequency%20Noise%20and%20Impedance%20Spectroscopy%20Reveal%20Recombination%20Dynamics%20in%20Organic%20Solar%20Cells%20Using%20Fullerene%20and%20Non%E2%80%90Fullerene%20Acceptors&rft.jtitle=Advanced%20functional%20materials&rft.au=Luck,%20Kyle%20A.&rft.date=2017-12-22&rft.volume=27&rft.issue=48&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201703805&rft_dat=%3Cproquest_osti_%3E1978596110%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978596110&rft_id=info:pmid/&rfr_iscdi=true |