Using coherence to enhance function in chemical and biophysical systems
Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, rec...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2017-03, Vol.543 (7647), p.647-656 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 656 |
---|---|
container_issue | 7647 |
container_start_page | 647 |
container_title | Nature (London) |
container_volume | 543 |
creator | Scholes, Gregory D. Fleming, Graham R. Chen, Lin X. Aspuru-Guzik, Alán Buchleitner, Andreas Coker, David F. Engel, Gregory S. van Grondelle, Rienk Ishizaki, Akihito Jonas, David M. Lundeen, Jeff S. McCusker, James K. Mukamel, Shaul Ogilvie, Jennifer P. Olaya-Castro, Alexandra Ratner, Mark A. Spano, Frank C. Whaley, K. Birgitta Zhu, Xiaoyang |
description | Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.
Coherence observed in chemical and biological systems suggests that even in the presence of disorder and noise the phenomenon may yield transformative ways for improving function.
Harnessing coherence (Scholes 21425, Review)
Coherence—the addition of wave-like amplitudes with fixed phase differences—is probably more familiar in its classical form than in its quantum mechanical form, and is usually considered fragile. However, coherence in chemical and biological systems has been shown to be more robust than previously thought, and to govern and enhance functions in various systems. This Review discusses how coherence can be used to enhance functions such as energy transfer in complex chemical systems, and over longer timescales than a fleeting superposition of states. The authors outline questions that remain over the extent to which systems and devices can be designed to utilize coherence, as well as future challenges in the study and harnessing of coherent phenomena. |
doi_str_mv | 10.1038/nature21425 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1406916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A504499560</galeid><sourcerecordid>A504499560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c657t-38e80d301089fab31429631e9f36ceb3a3705a263798dc753190e530bd3c60403</originalsourceid><addsrcrecordid>eNp10kFv0zAUB_AIgVgZnLijaLuAIOM5jh3nWFUwJk0gwSaOluu8tJ5Su7MdiX57HDqgRUE-2HF-_uvFeVn2ksAFASreWxUHjyWpSvYom5Gq5kXFRf04mwGUogBB-Un2LIQ7AGCkrp5mJ6WgTABns-zyNhi7yrVbo0erMY8uR7tW47IbrI7G2dzYXK9xY7Tqc2XbfGncdr0Lv57DLkTchOfZk071AV88zKfZ7ccPN4tPxfWXy6vF_LrQnNWxoAIFtBQIiKZTS5qKbjgl2HSUa1xSRWtgquS0bkSra0ZJA8goLFuqOVRAT7Ozfa4L0cigTUS91s5a1FGSCnhDeEKv92jr3f2AIcqNCRr7Xll0Q5BEiLJqGmhYouf_0Ds3eJs-YVRVLeqa0L9qpXqUxnYueqXHUDlnUKUsxsfaigm1Qote9c5iZ9L2kT-b8Hpr7uUhuphAabTjD5lMfXN0IJmIP-JKDSHIq29fj-3b_9v5zffF50mtvQvBYye33myU30kCcmxFedCKSb96uNlhucH2j_3dewm824OQXtkV-oOrn8j7CVoD4cY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884787713</pqid></control><display><type>article</type><title>Using coherence to enhance function in chemical and biophysical systems</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Scholes, Gregory D. ; Fleming, Graham R. ; Chen, Lin X. ; Aspuru-Guzik, Alán ; Buchleitner, Andreas ; Coker, David F. ; Engel, Gregory S. ; van Grondelle, Rienk ; Ishizaki, Akihito ; Jonas, David M. ; Lundeen, Jeff S. ; McCusker, James K. ; Mukamel, Shaul ; Ogilvie, Jennifer P. ; Olaya-Castro, Alexandra ; Ratner, Mark A. ; Spano, Frank C. ; Whaley, K. Birgitta ; Zhu, Xiaoyang</creator><creatorcontrib>Scholes, Gregory D. ; Fleming, Graham R. ; Chen, Lin X. ; Aspuru-Guzik, Alán ; Buchleitner, Andreas ; Coker, David F. ; Engel, Gregory S. ; van Grondelle, Rienk ; Ishizaki, Akihito ; Jonas, David M. ; Lundeen, Jeff S. ; McCusker, James K. ; Mukamel, Shaul ; Ogilvie, Jennifer P. ; Olaya-Castro, Alexandra ; Ratner, Mark A. ; Spano, Frank C. ; Whaley, K. Birgitta ; Zhu, Xiaoyang ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.
Coherence observed in chemical and biological systems suggests that even in the presence of disorder and noise the phenomenon may yield transformative ways for improving function.
Harnessing coherence (Scholes 21425, Review)
Coherence—the addition of wave-like amplitudes with fixed phase differences—is probably more familiar in its classical form than in its quantum mechanical form, and is usually considered fragile. However, coherence in chemical and biological systems has been shown to be more robust than previously thought, and to govern and enhance functions in various systems. This Review discusses how coherence can be used to enhance functions such as energy transfer in complex chemical systems, and over longer timescales than a fleeting superposition of states. The authors outline questions that remain over the extent to which systems and devices can be designed to utilize coherence, as well as future challenges in the study and harnessing of coherent phenomena.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature21425</identifier><identifier>PMID: 28358065</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077/4072 ; 639/638 ; 639/638/440 ; Biological systems ; Biophysics ; Chemical bonds ; Chemical systems ; Coherent states ; Electrons ; Energy Transfer ; Humanities and Social Sciences ; Hydrocarbons ; Light ; Metals - chemistry ; Models, Biological ; Models, Chemical ; Models, Molecular ; Motion ; multidisciplinary ; Physics research ; Quantum Theory ; review-article ; Saturn ; Scattering (Physics) ; Science ; Spectrum Analysis ; Time Factors ; Vibration</subject><ispartof>Nature (London), 2017-03, Vol.543 (7647), p.647-656</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 30, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c657t-38e80d301089fab31429631e9f36ceb3a3705a263798dc753190e530bd3c60403</citedby><cites>FETCH-LOGICAL-c657t-38e80d301089fab31429631e9f36ceb3a3705a263798dc753190e530bd3c60403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature21425$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature21425$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28358065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1406916$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Fleming, Graham R.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><creatorcontrib>Buchleitner, Andreas</creatorcontrib><creatorcontrib>Coker, David F.</creatorcontrib><creatorcontrib>Engel, Gregory S.</creatorcontrib><creatorcontrib>van Grondelle, Rienk</creatorcontrib><creatorcontrib>Ishizaki, Akihito</creatorcontrib><creatorcontrib>Jonas, David M.</creatorcontrib><creatorcontrib>Lundeen, Jeff S.</creatorcontrib><creatorcontrib>McCusker, James K.</creatorcontrib><creatorcontrib>Mukamel, Shaul</creatorcontrib><creatorcontrib>Ogilvie, Jennifer P.</creatorcontrib><creatorcontrib>Olaya-Castro, Alexandra</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><creatorcontrib>Spano, Frank C.</creatorcontrib><creatorcontrib>Whaley, K. Birgitta</creatorcontrib><creatorcontrib>Zhu, Xiaoyang</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Using coherence to enhance function in chemical and biophysical systems</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.
Coherence observed in chemical and biological systems suggests that even in the presence of disorder and noise the phenomenon may yield transformative ways for improving function.
Harnessing coherence (Scholes 21425, Review)
Coherence—the addition of wave-like amplitudes with fixed phase differences—is probably more familiar in its classical form than in its quantum mechanical form, and is usually considered fragile. However, coherence in chemical and biological systems has been shown to be more robust than previously thought, and to govern and enhance functions in various systems. This Review discusses how coherence can be used to enhance functions such as energy transfer in complex chemical systems, and over longer timescales than a fleeting superposition of states. The authors outline questions that remain over the extent to which systems and devices can be designed to utilize coherence, as well as future challenges in the study and harnessing of coherent phenomena.</description><subject>639/4077/4072</subject><subject>639/638</subject><subject>639/638/440</subject><subject>Biological systems</subject><subject>Biophysics</subject><subject>Chemical bonds</subject><subject>Chemical systems</subject><subject>Coherent states</subject><subject>Electrons</subject><subject>Energy Transfer</subject><subject>Humanities and Social Sciences</subject><subject>Hydrocarbons</subject><subject>Light</subject><subject>Metals - chemistry</subject><subject>Models, Biological</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Motion</subject><subject>multidisciplinary</subject><subject>Physics research</subject><subject>Quantum Theory</subject><subject>review-article</subject><subject>Saturn</subject><subject>Scattering (Physics)</subject><subject>Science</subject><subject>Spectrum Analysis</subject><subject>Time Factors</subject><subject>Vibration</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10kFv0zAUB_AIgVgZnLijaLuAIOM5jh3nWFUwJk0gwSaOluu8tJ5Su7MdiX57HDqgRUE-2HF-_uvFeVn2ksAFASreWxUHjyWpSvYom5Gq5kXFRf04mwGUogBB-Un2LIQ7AGCkrp5mJ6WgTABns-zyNhi7yrVbo0erMY8uR7tW47IbrI7G2dzYXK9xY7Tqc2XbfGncdr0Lv57DLkTchOfZk071AV88zKfZ7ccPN4tPxfWXy6vF_LrQnNWxoAIFtBQIiKZTS5qKbjgl2HSUa1xSRWtgquS0bkSra0ZJA8goLFuqOVRAT7Ozfa4L0cigTUS91s5a1FGSCnhDeEKv92jr3f2AIcqNCRr7Xll0Q5BEiLJqGmhYouf_0Ds3eJs-YVRVLeqa0L9qpXqUxnYueqXHUDlnUKUsxsfaigm1Qote9c5iZ9L2kT-b8Hpr7uUhuphAabTjD5lMfXN0IJmIP-JKDSHIq29fj-3b_9v5zffF50mtvQvBYye33myU30kCcmxFedCKSb96uNlhucH2j_3dewm824OQXtkV-oOrn8j7CVoD4cY</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Scholes, Gregory D.</creator><creator>Fleming, Graham R.</creator><creator>Chen, Lin X.</creator><creator>Aspuru-Guzik, Alán</creator><creator>Buchleitner, Andreas</creator><creator>Coker, David F.</creator><creator>Engel, Gregory S.</creator><creator>van Grondelle, Rienk</creator><creator>Ishizaki, Akihito</creator><creator>Jonas, David M.</creator><creator>Lundeen, Jeff S.</creator><creator>McCusker, James K.</creator><creator>Mukamel, Shaul</creator><creator>Ogilvie, Jennifer P.</creator><creator>Olaya-Castro, Alexandra</creator><creator>Ratner, Mark A.</creator><creator>Spano, Frank C.</creator><creator>Whaley, K. Birgitta</creator><creator>Zhu, Xiaoyang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20170330</creationdate><title>Using coherence to enhance function in chemical and biophysical systems</title><author>Scholes, Gregory D. ; Fleming, Graham R. ; Chen, Lin X. ; Aspuru-Guzik, Alán ; Buchleitner, Andreas ; Coker, David F. ; Engel, Gregory S. ; van Grondelle, Rienk ; Ishizaki, Akihito ; Jonas, David M. ; Lundeen, Jeff S. ; McCusker, James K. ; Mukamel, Shaul ; Ogilvie, Jennifer P. ; Olaya-Castro, Alexandra ; Ratner, Mark A. ; Spano, Frank C. ; Whaley, K. Birgitta ; Zhu, Xiaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c657t-38e80d301089fab31429631e9f36ceb3a3705a263798dc753190e530bd3c60403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/4077/4072</topic><topic>639/638</topic><topic>639/638/440</topic><topic>Biological systems</topic><topic>Biophysics</topic><topic>Chemical bonds</topic><topic>Chemical systems</topic><topic>Coherent states</topic><topic>Electrons</topic><topic>Energy Transfer</topic><topic>Humanities and Social Sciences</topic><topic>Hydrocarbons</topic><topic>Light</topic><topic>Metals - chemistry</topic><topic>Models, Biological</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Motion</topic><topic>multidisciplinary</topic><topic>Physics research</topic><topic>Quantum Theory</topic><topic>review-article</topic><topic>Saturn</topic><topic>Scattering (Physics)</topic><topic>Science</topic><topic>Spectrum Analysis</topic><topic>Time Factors</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Fleming, Graham R.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><creatorcontrib>Buchleitner, Andreas</creatorcontrib><creatorcontrib>Coker, David F.</creatorcontrib><creatorcontrib>Engel, Gregory S.</creatorcontrib><creatorcontrib>van Grondelle, Rienk</creatorcontrib><creatorcontrib>Ishizaki, Akihito</creatorcontrib><creatorcontrib>Jonas, David M.</creatorcontrib><creatorcontrib>Lundeen, Jeff S.</creatorcontrib><creatorcontrib>McCusker, James K.</creatorcontrib><creatorcontrib>Mukamel, Shaul</creatorcontrib><creatorcontrib>Ogilvie, Jennifer P.</creatorcontrib><creatorcontrib>Olaya-Castro, Alexandra</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><creatorcontrib>Spano, Frank C.</creatorcontrib><creatorcontrib>Whaley, K. Birgitta</creatorcontrib><creatorcontrib>Zhu, Xiaoyang</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholes, Gregory D.</au><au>Fleming, Graham R.</au><au>Chen, Lin X.</au><au>Aspuru-Guzik, Alán</au><au>Buchleitner, Andreas</au><au>Coker, David F.</au><au>Engel, Gregory S.</au><au>van Grondelle, Rienk</au><au>Ishizaki, Akihito</au><au>Jonas, David M.</au><au>Lundeen, Jeff S.</au><au>McCusker, James K.</au><au>Mukamel, Shaul</au><au>Ogilvie, Jennifer P.</au><au>Olaya-Castro, Alexandra</au><au>Ratner, Mark A.</au><au>Spano, Frank C.</au><au>Whaley, K. Birgitta</au><au>Zhu, Xiaoyang</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using coherence to enhance function in chemical and biophysical systems</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2017-03-30</date><risdate>2017</risdate><volume>543</volume><issue>7647</issue><spage>647</spage><epage>656</epage><pages>647-656</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.
Coherence observed in chemical and biological systems suggests that even in the presence of disorder and noise the phenomenon may yield transformative ways for improving function.
Harnessing coherence (Scholes 21425, Review)
Coherence—the addition of wave-like amplitudes with fixed phase differences—is probably more familiar in its classical form than in its quantum mechanical form, and is usually considered fragile. However, coherence in chemical and biological systems has been shown to be more robust than previously thought, and to govern and enhance functions in various systems. This Review discusses how coherence can be used to enhance functions such as energy transfer in complex chemical systems, and over longer timescales than a fleeting superposition of states. The authors outline questions that remain over the extent to which systems and devices can be designed to utilize coherence, as well as future challenges in the study and harnessing of coherent phenomena.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28358065</pmid><doi>10.1038/nature21425</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2017-03, Vol.543 (7647), p.647-656 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1406916 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 639/4077/4072 639/638 639/638/440 Biological systems Biophysics Chemical bonds Chemical systems Coherent states Electrons Energy Transfer Humanities and Social Sciences Hydrocarbons Light Metals - chemistry Models, Biological Models, Chemical Models, Molecular Motion multidisciplinary Physics research Quantum Theory review-article Saturn Scattering (Physics) Science Spectrum Analysis Time Factors Vibration |
title | Using coherence to enhance function in chemical and biophysical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20coherence%20to%20enhance%20function%20in%20chemical%20and%20biophysical%20systems&rft.jtitle=Nature%20(London)&rft.au=Scholes,%20Gregory%20D.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-03-30&rft.volume=543&rft.issue=7647&rft.spage=647&rft.epage=656&rft.pages=647-656&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature21425&rft_dat=%3Cgale_osti_%3EA504499560%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884787713&rft_id=info:pmid/28358065&rft_galeid=A504499560&rfr_iscdi=true |