Using coherence to enhance function in chemical and biophysical systems

Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2017-03, Vol.543 (7647), p.647-656
Hauptverfasser: Scholes, Gregory D., Fleming, Graham R., Chen, Lin X., Aspuru-Guzik, Alán, Buchleitner, Andreas, Coker, David F., Engel, Gregory S., van Grondelle, Rienk, Ishizaki, Akihito, Jonas, David M., Lundeen, Jeff S., McCusker, James K., Mukamel, Shaul, Ogilvie, Jennifer P., Olaya-Castro, Alexandra, Ratner, Mark A., Spano, Frank C., Whaley, K. Birgitta, Zhu, Xiaoyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 656
container_issue 7647
container_start_page 647
container_title Nature (London)
container_volume 543
creator Scholes, Gregory D.
Fleming, Graham R.
Chen, Lin X.
Aspuru-Guzik, Alán
Buchleitner, Andreas
Coker, David F.
Engel, Gregory S.
van Grondelle, Rienk
Ishizaki, Akihito
Jonas, David M.
Lundeen, Jeff S.
McCusker, James K.
Mukamel, Shaul
Ogilvie, Jennifer P.
Olaya-Castro, Alexandra
Ratner, Mark A.
Spano, Frank C.
Whaley, K. Birgitta
Zhu, Xiaoyang
description Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function. Coherence observed in chemical and biological systems suggests that even in the presence of disorder and noise the phenomenon may yield transformative ways for improving function. Harnessing coherence (Scholes 21425, Review) Coherence—the addition of wave-like amplitudes with fixed phase differences—is probably more familiar in its classical form than in its quantum mechanical form, and is usually considered fragile. However, coherence in chemical and biological systems has been shown to be more robust than previously thought, and to govern and enhance functions in various systems. This Review discusses how coherence can be used to enhance functions such as energy transfer in complex chemical systems, and over longer timescales than a fleeting superposition of states. The authors outline questions that remain over the extent to which systems and devices can be designed to utilize coherence, as well as future challenges in the study and harnessing of coherent phenomena.
doi_str_mv 10.1038/nature21425
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1406916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A504499560</galeid><sourcerecordid>A504499560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c657t-38e80d301089fab31429631e9f36ceb3a3705a263798dc753190e530bd3c60403</originalsourceid><addsrcrecordid>eNp10kFv0zAUB_AIgVgZnLijaLuAIOM5jh3nWFUwJk0gwSaOluu8tJ5Su7MdiX57HDqgRUE-2HF-_uvFeVn2ksAFASreWxUHjyWpSvYom5Gq5kXFRf04mwGUogBB-Un2LIQ7AGCkrp5mJ6WgTABns-zyNhi7yrVbo0erMY8uR7tW47IbrI7G2dzYXK9xY7Tqc2XbfGncdr0Lv57DLkTchOfZk071AV88zKfZ7ccPN4tPxfWXy6vF_LrQnNWxoAIFtBQIiKZTS5qKbjgl2HSUa1xSRWtgquS0bkSra0ZJA8goLFuqOVRAT7Ozfa4L0cigTUS91s5a1FGSCnhDeEKv92jr3f2AIcqNCRr7Xll0Q5BEiLJqGmhYouf_0Ds3eJs-YVRVLeqa0L9qpXqUxnYueqXHUDlnUKUsxsfaigm1Qote9c5iZ9L2kT-b8Hpr7uUhuphAabTjD5lMfXN0IJmIP-JKDSHIq29fj-3b_9v5zffF50mtvQvBYye33myU30kCcmxFedCKSb96uNlhucH2j_3dewm824OQXtkV-oOrn8j7CVoD4cY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884787713</pqid></control><display><type>article</type><title>Using coherence to enhance function in chemical and biophysical systems</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Scholes, Gregory D. ; Fleming, Graham R. ; Chen, Lin X. ; Aspuru-Guzik, Alán ; Buchleitner, Andreas ; Coker, David F. ; Engel, Gregory S. ; van Grondelle, Rienk ; Ishizaki, Akihito ; Jonas, David M. ; Lundeen, Jeff S. ; McCusker, James K. ; Mukamel, Shaul ; Ogilvie, Jennifer P. ; Olaya-Castro, Alexandra ; Ratner, Mark A. ; Spano, Frank C. ; Whaley, K. Birgitta ; Zhu, Xiaoyang</creator><creatorcontrib>Scholes, Gregory D. ; Fleming, Graham R. ; Chen, Lin X. ; Aspuru-Guzik, Alán ; Buchleitner, Andreas ; Coker, David F. ; Engel, Gregory S. ; van Grondelle, Rienk ; Ishizaki, Akihito ; Jonas, David M. ; Lundeen, Jeff S. ; McCusker, James K. ; Mukamel, Shaul ; Ogilvie, Jennifer P. ; Olaya-Castro, Alexandra ; Ratner, Mark A. ; Spano, Frank C. ; Whaley, K. Birgitta ; Zhu, Xiaoyang ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function. Coherence observed in chemical and biological systems suggests that even in the presence of disorder and noise the phenomenon may yield transformative ways for improving function. Harnessing coherence (Scholes 21425, Review) Coherence—the addition of wave-like amplitudes with fixed phase differences—is probably more familiar in its classical form than in its quantum mechanical form, and is usually considered fragile. However, coherence in chemical and biological systems has been shown to be more robust than previously thought, and to govern and enhance functions in various systems. This Review discusses how coherence can be used to enhance functions such as energy transfer in complex chemical systems, and over longer timescales than a fleeting superposition of states. The authors outline questions that remain over the extent to which systems and devices can be designed to utilize coherence, as well as future challenges in the study and harnessing of coherent phenomena.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature21425</identifier><identifier>PMID: 28358065</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077/4072 ; 639/638 ; 639/638/440 ; Biological systems ; Biophysics ; Chemical bonds ; Chemical systems ; Coherent states ; Electrons ; Energy Transfer ; Humanities and Social Sciences ; Hydrocarbons ; Light ; Metals - chemistry ; Models, Biological ; Models, Chemical ; Models, Molecular ; Motion ; multidisciplinary ; Physics research ; Quantum Theory ; review-article ; Saturn ; Scattering (Physics) ; Science ; Spectrum Analysis ; Time Factors ; Vibration</subject><ispartof>Nature (London), 2017-03, Vol.543 (7647), p.647-656</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 30, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c657t-38e80d301089fab31429631e9f36ceb3a3705a263798dc753190e530bd3c60403</citedby><cites>FETCH-LOGICAL-c657t-38e80d301089fab31429631e9f36ceb3a3705a263798dc753190e530bd3c60403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature21425$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature21425$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28358065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1406916$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Fleming, Graham R.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><creatorcontrib>Buchleitner, Andreas</creatorcontrib><creatorcontrib>Coker, David F.</creatorcontrib><creatorcontrib>Engel, Gregory S.</creatorcontrib><creatorcontrib>van Grondelle, Rienk</creatorcontrib><creatorcontrib>Ishizaki, Akihito</creatorcontrib><creatorcontrib>Jonas, David M.</creatorcontrib><creatorcontrib>Lundeen, Jeff S.</creatorcontrib><creatorcontrib>McCusker, James K.</creatorcontrib><creatorcontrib>Mukamel, Shaul</creatorcontrib><creatorcontrib>Ogilvie, Jennifer P.</creatorcontrib><creatorcontrib>Olaya-Castro, Alexandra</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><creatorcontrib>Spano, Frank C.</creatorcontrib><creatorcontrib>Whaley, K. Birgitta</creatorcontrib><creatorcontrib>Zhu, Xiaoyang</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Using coherence to enhance function in chemical and biophysical systems</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function. Coherence observed in chemical and biological systems suggests that even in the presence of disorder and noise the phenomenon may yield transformative ways for improving function. Harnessing coherence (Scholes 21425, Review) Coherence—the addition of wave-like amplitudes with fixed phase differences—is probably more familiar in its classical form than in its quantum mechanical form, and is usually considered fragile. However, coherence in chemical and biological systems has been shown to be more robust than previously thought, and to govern and enhance functions in various systems. This Review discusses how coherence can be used to enhance functions such as energy transfer in complex chemical systems, and over longer timescales than a fleeting superposition of states. The authors outline questions that remain over the extent to which systems and devices can be designed to utilize coherence, as well as future challenges in the study and harnessing of coherent phenomena.</description><subject>639/4077/4072</subject><subject>639/638</subject><subject>639/638/440</subject><subject>Biological systems</subject><subject>Biophysics</subject><subject>Chemical bonds</subject><subject>Chemical systems</subject><subject>Coherent states</subject><subject>Electrons</subject><subject>Energy Transfer</subject><subject>Humanities and Social Sciences</subject><subject>Hydrocarbons</subject><subject>Light</subject><subject>Metals - chemistry</subject><subject>Models, Biological</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Motion</subject><subject>multidisciplinary</subject><subject>Physics research</subject><subject>Quantum Theory</subject><subject>review-article</subject><subject>Saturn</subject><subject>Scattering (Physics)</subject><subject>Science</subject><subject>Spectrum Analysis</subject><subject>Time Factors</subject><subject>Vibration</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10kFv0zAUB_AIgVgZnLijaLuAIOM5jh3nWFUwJk0gwSaOluu8tJ5Su7MdiX57HDqgRUE-2HF-_uvFeVn2ksAFASreWxUHjyWpSvYom5Gq5kXFRf04mwGUogBB-Un2LIQ7AGCkrp5mJ6WgTABns-zyNhi7yrVbo0erMY8uR7tW47IbrI7G2dzYXK9xY7Tqc2XbfGncdr0Lv57DLkTchOfZk071AV88zKfZ7ccPN4tPxfWXy6vF_LrQnNWxoAIFtBQIiKZTS5qKbjgl2HSUa1xSRWtgquS0bkSra0ZJA8goLFuqOVRAT7Ozfa4L0cigTUS91s5a1FGSCnhDeEKv92jr3f2AIcqNCRr7Xll0Q5BEiLJqGmhYouf_0Ds3eJs-YVRVLeqa0L9qpXqUxnYueqXHUDlnUKUsxsfaigm1Qote9c5iZ9L2kT-b8Hpr7uUhuphAabTjD5lMfXN0IJmIP-JKDSHIq29fj-3b_9v5zffF50mtvQvBYye33myU30kCcmxFedCKSb96uNlhucH2j_3dewm824OQXtkV-oOrn8j7CVoD4cY</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Scholes, Gregory D.</creator><creator>Fleming, Graham R.</creator><creator>Chen, Lin X.</creator><creator>Aspuru-Guzik, Alán</creator><creator>Buchleitner, Andreas</creator><creator>Coker, David F.</creator><creator>Engel, Gregory S.</creator><creator>van Grondelle, Rienk</creator><creator>Ishizaki, Akihito</creator><creator>Jonas, David M.</creator><creator>Lundeen, Jeff S.</creator><creator>McCusker, James K.</creator><creator>Mukamel, Shaul</creator><creator>Ogilvie, Jennifer P.</creator><creator>Olaya-Castro, Alexandra</creator><creator>Ratner, Mark A.</creator><creator>Spano, Frank C.</creator><creator>Whaley, K. Birgitta</creator><creator>Zhu, Xiaoyang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20170330</creationdate><title>Using coherence to enhance function in chemical and biophysical systems</title><author>Scholes, Gregory D. ; Fleming, Graham R. ; Chen, Lin X. ; Aspuru-Guzik, Alán ; Buchleitner, Andreas ; Coker, David F. ; Engel, Gregory S. ; van Grondelle, Rienk ; Ishizaki, Akihito ; Jonas, David M. ; Lundeen, Jeff S. ; McCusker, James K. ; Mukamel, Shaul ; Ogilvie, Jennifer P. ; Olaya-Castro, Alexandra ; Ratner, Mark A. ; Spano, Frank C. ; Whaley, K. Birgitta ; Zhu, Xiaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c657t-38e80d301089fab31429631e9f36ceb3a3705a263798dc753190e530bd3c60403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/4077/4072</topic><topic>639/638</topic><topic>639/638/440</topic><topic>Biological systems</topic><topic>Biophysics</topic><topic>Chemical bonds</topic><topic>Chemical systems</topic><topic>Coherent states</topic><topic>Electrons</topic><topic>Energy Transfer</topic><topic>Humanities and Social Sciences</topic><topic>Hydrocarbons</topic><topic>Light</topic><topic>Metals - chemistry</topic><topic>Models, Biological</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Motion</topic><topic>multidisciplinary</topic><topic>Physics research</topic><topic>Quantum Theory</topic><topic>review-article</topic><topic>Saturn</topic><topic>Scattering (Physics)</topic><topic>Science</topic><topic>Spectrum Analysis</topic><topic>Time Factors</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Fleming, Graham R.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><creatorcontrib>Buchleitner, Andreas</creatorcontrib><creatorcontrib>Coker, David F.</creatorcontrib><creatorcontrib>Engel, Gregory S.</creatorcontrib><creatorcontrib>van Grondelle, Rienk</creatorcontrib><creatorcontrib>Ishizaki, Akihito</creatorcontrib><creatorcontrib>Jonas, David M.</creatorcontrib><creatorcontrib>Lundeen, Jeff S.</creatorcontrib><creatorcontrib>McCusker, James K.</creatorcontrib><creatorcontrib>Mukamel, Shaul</creatorcontrib><creatorcontrib>Ogilvie, Jennifer P.</creatorcontrib><creatorcontrib>Olaya-Castro, Alexandra</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><creatorcontrib>Spano, Frank C.</creatorcontrib><creatorcontrib>Whaley, K. Birgitta</creatorcontrib><creatorcontrib>Zhu, Xiaoyang</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholes, Gregory D.</au><au>Fleming, Graham R.</au><au>Chen, Lin X.</au><au>Aspuru-Guzik, Alán</au><au>Buchleitner, Andreas</au><au>Coker, David F.</au><au>Engel, Gregory S.</au><au>van Grondelle, Rienk</au><au>Ishizaki, Akihito</au><au>Jonas, David M.</au><au>Lundeen, Jeff S.</au><au>McCusker, James K.</au><au>Mukamel, Shaul</au><au>Ogilvie, Jennifer P.</au><au>Olaya-Castro, Alexandra</au><au>Ratner, Mark A.</au><au>Spano, Frank C.</au><au>Whaley, K. Birgitta</au><au>Zhu, Xiaoyang</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using coherence to enhance function in chemical and biophysical systems</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2017-03-30</date><risdate>2017</risdate><volume>543</volume><issue>7647</issue><spage>647</spage><epage>656</epage><pages>647-656</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function. Coherence observed in chemical and biological systems suggests that even in the presence of disorder and noise the phenomenon may yield transformative ways for improving function. Harnessing coherence (Scholes 21425, Review) Coherence—the addition of wave-like amplitudes with fixed phase differences—is probably more familiar in its classical form than in its quantum mechanical form, and is usually considered fragile. However, coherence in chemical and biological systems has been shown to be more robust than previously thought, and to govern and enhance functions in various systems. This Review discusses how coherence can be used to enhance functions such as energy transfer in complex chemical systems, and over longer timescales than a fleeting superposition of states. The authors outline questions that remain over the extent to which systems and devices can be designed to utilize coherence, as well as future challenges in the study and harnessing of coherent phenomena.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28358065</pmid><doi>10.1038/nature21425</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2017-03, Vol.543 (7647), p.647-656
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1406916
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 639/4077/4072
639/638
639/638/440
Biological systems
Biophysics
Chemical bonds
Chemical systems
Coherent states
Electrons
Energy Transfer
Humanities and Social Sciences
Hydrocarbons
Light
Metals - chemistry
Models, Biological
Models, Chemical
Models, Molecular
Motion
multidisciplinary
Physics research
Quantum Theory
review-article
Saturn
Scattering (Physics)
Science
Spectrum Analysis
Time Factors
Vibration
title Using coherence to enhance function in chemical and biophysical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20coherence%20to%20enhance%20function%20in%20chemical%20and%20biophysical%20systems&rft.jtitle=Nature%20(London)&rft.au=Scholes,%20Gregory%20D.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-03-30&rft.volume=543&rft.issue=7647&rft.spage=647&rft.epage=656&rft.pages=647-656&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature21425&rft_dat=%3Cgale_osti_%3EA504499560%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884787713&rft_id=info:pmid/28358065&rft_galeid=A504499560&rfr_iscdi=true