Crystal Structure of a Type IV Pilus Assembly ATPase: Insights into the Molecular Mechanism of PilB from Thermus thermophilus
Type IV pili (T4P) mediate bacterial motility and virulence. The PilB/GspE family ATPases power the assembly of T4P and type 2 secretion systems. We determined the structure of the ATPase region of PilB (PilBATP) in complex with ATPγS to provide a model of a T4P assembly ATPase and a view of a PilB/...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2016-11, Vol.24 (11), p.1886-1897 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1897 |
---|---|
container_issue | 11 |
container_start_page | 1886 |
container_title | Structure (London) |
container_volume | 24 |
creator | Mancl, Jordan M. Black, Wesley P. Robinson, Howard Yang, Zhaomin Schubot, Florian D. |
description | Type IV pili (T4P) mediate bacterial motility and virulence. The PilB/GspE family ATPases power the assembly of T4P and type 2 secretion systems. We determined the structure of the ATPase region of PilB (PilBATP) in complex with ATPγS to provide a model of a T4P assembly ATPase and a view of a PilB/GspE family hexamer at better than 3-Å resolution. Spatial positioning and conformations of the protomers suggest a mechanism of force generation. All six PilBATP protomers contain bound ATPγS. Two protomers form a closed conformation poised for ATP hydrolysis. The other four molecules assume an open conformation but separate into two pairs with distinct active-site accessibilities. We propose that one pair represents the post-hydrolysis phase while the other pair appears poised for ADP/ATP exchange. Collectively, the data suggest that T4P assembly is powered by coordinating concurrent substrate binding with ATP hydrolysis across the PilB hexamer.
•Crystal structure of a type IV pilus assembly ATPase•PilB in complex with ATPγS assumes three distinct positions within the hexamer•Binding studies suggest that ADP is actively displaced by ATP during catalysis•Ring positions indicate a symmetric rotary catalytic mechanism of force generation
Hexameric ATPases power numerous cellular activities critical for bacterial virulence. Mancl et al. have solved the structure of a type IV assembly ATPase to produce insights into the mechanism of force generation and broadly into the mechanism of catalysis of PilB/GspE family enzymes. |
doi_str_mv | 10.1016/j.str.2016.08.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1406641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096921261630243X</els_id><sourcerecordid>1836727916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-6ceb953433d1678e68e04d67ec3c6ad3b954b83447f06fb678ff5f2899a89bf93</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhi0EYsvCD-CCLE5cEuwkdWw4lYqPSrtiJQpXy3HG1FUSdz0OUg_8dxx14chpLPl5H43mJeQlZyVnXLw9lphiWeVnyWTJOHtEVly2smi4FI_JiimhiopX4oo8Qzwyxqo1Y0_JVdUK0QrFVuT3Np4xmYF-S3G2aY5Ag6OG7s8noLsf9M4PM9INIozdcKab_Z1BeEd3E_qfh4TUTynQdAB6Gwaw82AivQV7MJPHcTHl_AfqYhjp_gBxzK60zHA6LOLn5IkzA8KLh3lNvn_6uN9-KW6-ft5tNzeFbVSdCmGhU-u6qeuei1aCkMCaXrRgaytMX-fPppN107SOCddlxLm1q6RSRqrOqfqavL54Ayav0fqUd7RhmsAmzRsmRMMz9OYCnWK4nwGTHj1aGAYzQZhRc1mLtmoVFxnlF9TGgBjB6VP0o4lnzZleqtFHnavRSzWaSZ2ryZlXD_q5G6H_l_jbRQbeXwDIl_jlIS6LwmSh93HZsw_-P_o_PNWfPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836727916</pqid></control><display><type>article</type><title>Crystal Structure of a Type IV Pilus Assembly ATPase: Insights into the Molecular Mechanism of PilB from Thermus thermophilus</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Mancl, Jordan M. ; Black, Wesley P. ; Robinson, Howard ; Yang, Zhaomin ; Schubot, Florian D.</creator><creatorcontrib>Mancl, Jordan M. ; Black, Wesley P. ; Robinson, Howard ; Yang, Zhaomin ; Schubot, Florian D. ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Type IV pili (T4P) mediate bacterial motility and virulence. The PilB/GspE family ATPases power the assembly of T4P and type 2 secretion systems. We determined the structure of the ATPase region of PilB (PilBATP) in complex with ATPγS to provide a model of a T4P assembly ATPase and a view of a PilB/GspE family hexamer at better than 3-Å resolution. Spatial positioning and conformations of the protomers suggest a mechanism of force generation. All six PilBATP protomers contain bound ATPγS. Two protomers form a closed conformation poised for ATP hydrolysis. The other four molecules assume an open conformation but separate into two pairs with distinct active-site accessibilities. We propose that one pair represents the post-hydrolysis phase while the other pair appears poised for ADP/ATP exchange. Collectively, the data suggest that T4P assembly is powered by coordinating concurrent substrate binding with ATP hydrolysis across the PilB hexamer.
•Crystal structure of a type IV pilus assembly ATPase•PilB in complex with ATPγS assumes three distinct positions within the hexamer•Binding studies suggest that ADP is actively displaced by ATP during catalysis•Ring positions indicate a symmetric rotary catalytic mechanism of force generation
Hexameric ATPases power numerous cellular activities critical for bacterial virulence. Mancl et al. have solved the structure of a type IV assembly ATPase to produce insights into the mechanism of force generation and broadly into the mechanism of catalysis of PilB/GspE family enzymes.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2016.08.010</identifier><identifier>PMID: 27667690</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - analogs & derivatives ; Adenosine Triphosphate - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Fimbriae, Bacterial - chemistry ; Fimbriae, Bacterial - metabolism ; Models, Molecular ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Protein Binding ; Protein Structure, Secondary ; Substrate Specificity ; Thermus thermophilus - chemistry ; Thermus thermophilus - enzymology</subject><ispartof>Structure (London), 2016-11, Vol.24 (11), p.1886-1897</ispartof><rights>2016</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-6ceb953433d1678e68e04d67ec3c6ad3b954b83447f06fb678ff5f2899a89bf93</citedby><cites>FETCH-LOGICAL-c493t-6ceb953433d1678e68e04d67ec3c6ad3b954b83447f06fb678ff5f2899a89bf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S096921261630243X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27667690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1406641$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mancl, Jordan M.</creatorcontrib><creatorcontrib>Black, Wesley P.</creatorcontrib><creatorcontrib>Robinson, Howard</creatorcontrib><creatorcontrib>Yang, Zhaomin</creatorcontrib><creatorcontrib>Schubot, Florian D.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Crystal Structure of a Type IV Pilus Assembly ATPase: Insights into the Molecular Mechanism of PilB from Thermus thermophilus</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Type IV pili (T4P) mediate bacterial motility and virulence. The PilB/GspE family ATPases power the assembly of T4P and type 2 secretion systems. We determined the structure of the ATPase region of PilB (PilBATP) in complex with ATPγS to provide a model of a T4P assembly ATPase and a view of a PilB/GspE family hexamer at better than 3-Å resolution. Spatial positioning and conformations of the protomers suggest a mechanism of force generation. All six PilBATP protomers contain bound ATPγS. Two protomers form a closed conformation poised for ATP hydrolysis. The other four molecules assume an open conformation but separate into two pairs with distinct active-site accessibilities. We propose that one pair represents the post-hydrolysis phase while the other pair appears poised for ADP/ATP exchange. Collectively, the data suggest that T4P assembly is powered by coordinating concurrent substrate binding with ATP hydrolysis across the PilB hexamer.
•Crystal structure of a type IV pilus assembly ATPase•PilB in complex with ATPγS assumes three distinct positions within the hexamer•Binding studies suggest that ADP is actively displaced by ATP during catalysis•Ring positions indicate a symmetric rotary catalytic mechanism of force generation
Hexameric ATPases power numerous cellular activities critical for bacterial virulence. Mancl et al. have solved the structure of a type IV assembly ATPase to produce insights into the mechanism of force generation and broadly into the mechanism of catalysis of PilB/GspE family enzymes.</description><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - analogs & derivatives</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Crystallography, X-Ray</subject><subject>Fimbriae, Bacterial - chemistry</subject><subject>Fimbriae, Bacterial - metabolism</subject><subject>Models, Molecular</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Substrate Specificity</subject><subject>Thermus thermophilus - chemistry</subject><subject>Thermus thermophilus - enzymology</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2P0zAQhi0EYsvCD-CCLE5cEuwkdWw4lYqPSrtiJQpXy3HG1FUSdz0OUg_8dxx14chpLPl5H43mJeQlZyVnXLw9lphiWeVnyWTJOHtEVly2smi4FI_JiimhiopX4oo8Qzwyxqo1Y0_JVdUK0QrFVuT3Np4xmYF-S3G2aY5Ag6OG7s8noLsf9M4PM9INIozdcKab_Z1BeEd3E_qfh4TUTynQdAB6Gwaw82AivQV7MJPHcTHl_AfqYhjp_gBxzK60zHA6LOLn5IkzA8KLh3lNvn_6uN9-KW6-ft5tNzeFbVSdCmGhU-u6qeuei1aCkMCaXrRgaytMX-fPppN107SOCddlxLm1q6RSRqrOqfqavL54Ayav0fqUd7RhmsAmzRsmRMMz9OYCnWK4nwGTHj1aGAYzQZhRc1mLtmoVFxnlF9TGgBjB6VP0o4lnzZleqtFHnavRSzWaSZ2ryZlXD_q5G6H_l_jbRQbeXwDIl_jlIS6LwmSh93HZsw_-P_o_PNWfPg</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Mancl, Jordan M.</creator><creator>Black, Wesley P.</creator><creator>Robinson, Howard</creator><creator>Yang, Zhaomin</creator><creator>Schubot, Florian D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20161101</creationdate><title>Crystal Structure of a Type IV Pilus Assembly ATPase: Insights into the Molecular Mechanism of PilB from Thermus thermophilus</title><author>Mancl, Jordan M. ; Black, Wesley P. ; Robinson, Howard ; Yang, Zhaomin ; Schubot, Florian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-6ceb953433d1678e68e04d67ec3c6ad3b954b83447f06fb678ff5f2899a89bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - analogs & derivatives</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Crystallography, X-Ray</topic><topic>Fimbriae, Bacterial - chemistry</topic><topic>Fimbriae, Bacterial - metabolism</topic><topic>Models, Molecular</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Substrate Specificity</topic><topic>Thermus thermophilus - chemistry</topic><topic>Thermus thermophilus - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mancl, Jordan M.</creatorcontrib><creatorcontrib>Black, Wesley P.</creatorcontrib><creatorcontrib>Robinson, Howard</creatorcontrib><creatorcontrib>Yang, Zhaomin</creatorcontrib><creatorcontrib>Schubot, Florian D.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mancl, Jordan M.</au><au>Black, Wesley P.</au><au>Robinson, Howard</au><au>Yang, Zhaomin</au><au>Schubot, Florian D.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structure of a Type IV Pilus Assembly ATPase: Insights into the Molecular Mechanism of PilB from Thermus thermophilus</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>24</volume><issue>11</issue><spage>1886</spage><epage>1897</epage><pages>1886-1897</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Type IV pili (T4P) mediate bacterial motility and virulence. The PilB/GspE family ATPases power the assembly of T4P and type 2 secretion systems. We determined the structure of the ATPase region of PilB (PilBATP) in complex with ATPγS to provide a model of a T4P assembly ATPase and a view of a PilB/GspE family hexamer at better than 3-Å resolution. Spatial positioning and conformations of the protomers suggest a mechanism of force generation. All six PilBATP protomers contain bound ATPγS. Two protomers form a closed conformation poised for ATP hydrolysis. The other four molecules assume an open conformation but separate into two pairs with distinct active-site accessibilities. We propose that one pair represents the post-hydrolysis phase while the other pair appears poised for ADP/ATP exchange. Collectively, the data suggest that T4P assembly is powered by coordinating concurrent substrate binding with ATP hydrolysis across the PilB hexamer.
•Crystal structure of a type IV pilus assembly ATPase•PilB in complex with ATPγS assumes three distinct positions within the hexamer•Binding studies suggest that ADP is actively displaced by ATP during catalysis•Ring positions indicate a symmetric rotary catalytic mechanism of force generation
Hexameric ATPases power numerous cellular activities critical for bacterial virulence. Mancl et al. have solved the structure of a type IV assembly ATPase to produce insights into the mechanism of force generation and broadly into the mechanism of catalysis of PilB/GspE family enzymes.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27667690</pmid><doi>10.1016/j.str.2016.08.010</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 2016-11, Vol.24 (11), p.1886-1897 |
issn | 0969-2126 1878-4186 |
language | eng |
recordid | cdi_osti_scitechconnect_1406641 |
source | MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Adenosine Diphosphate - metabolism Adenosine Triphosphate - analogs & derivatives Adenosine Triphosphate - metabolism Bacterial Proteins - chemistry Bacterial Proteins - metabolism BASIC BIOLOGICAL SCIENCES Binding Sites Catalysis Crystallography, X-Ray Fimbriae, Bacterial - chemistry Fimbriae, Bacterial - metabolism Models, Molecular Oxidoreductases - chemistry Oxidoreductases - metabolism Protein Binding Protein Structure, Secondary Substrate Specificity Thermus thermophilus - chemistry Thermus thermophilus - enzymology |
title | Crystal Structure of a Type IV Pilus Assembly ATPase: Insights into the Molecular Mechanism of PilB from Thermus thermophilus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structure%20of%20a%20Type%20IV%20Pilus%20Assembly%20ATPase:%20Insights%20into%20the%20Molecular%20Mechanism%20of%20PilB%20from%20Thermus%20thermophilus&rft.jtitle=Structure%20(London)&rft.au=Mancl,%20Jordan%C2%A0M.&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2016-11-01&rft.volume=24&rft.issue=11&rft.spage=1886&rft.epage=1897&rft.pages=1886-1897&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2016.08.010&rft_dat=%3Cproquest_osti_%3E1836727916%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1836727916&rft_id=info:pmid/27667690&rft_els_id=S096921261630243X&rfr_iscdi=true |