Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells

Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two high-performance polymers, semicrystalline poly­[5-(2-hexyldod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2017-05, Vol.29 (10), p.4432-4444
Hauptverfasser: Eastham, Nicholas D., Dudnik, Alexander S., Aldrich, Thomas J., Manley, Eric F., Fauvell, Thomas J., Hartnett, Patrick E., Wasielewski, Michael R., Chen, Lin X., Melkonyan, Ferdinand S., Facchetti, Antonio, Chang, Robert P. H., Marks, Tobin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4444
container_issue 10
container_start_page 4432
container_title Chemistry of materials
container_volume 29
creator Eastham, Nicholas D.
Dudnik, Alexander S.
Aldrich, Thomas J.
Manley, Eric F.
Fauvell, Thomas J.
Hartnett, Patrick E.
Wasielewski, Michael R.
Chen, Lin X.
Melkonyan, Ferdinand S.
Facchetti, Antonio
Chang, Robert P. H.
Marks, Tobin J.
description Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two high-performance polymers, semicrystalline poly­[5-(2-hexyldodecyl)-4H-thieno­[3,4-c]­pyrrole-4,6­(5H)-dione-1,3-yl-alt-4,4″dodecyl-2,2′:5′,2″-terthiophene-5,5″-diyl] (PTPD3T or D1) and amorphous poly­{4,8-bis­(5-(2-ethylhexyl)­thiophen-2-yl)­benzo­[1,2-b:4,5-b′]­dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno­[3,4-b]­thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1–A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templated by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater M n), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ∼5%, but here both A2 and PBDTT-FTTE (medium M n) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers.
doi_str_mv 10.1021/acs.chemmater.7b00964
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1406377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a632923580</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-22d34b5faf7fb4040250400e1da3a46edec4d6141f9b240a3ab4e4411e95b5c3</originalsourceid><addsrcrecordid>eNqFUV1LwzAUDaLgnP4EIfjembRpu_k25qbChsPN55Kmt11GmowkFfqr_Itmbvjqy_08514OB6F7SkaUxPSRCzcSO2hb7sGO8pKQScYu0ICmMYlSQuJLNCDjSR6xPM2u0Y1ze0JooI4H6HvTcqXwyigQnQI8FQIO3ljMdYXXRvUtWPxsdJjMbO98AEstff-7nzaNhYZ7aTSe1zUI73AoV1JY47zthO8s4C20BxVAunnCn7oCG67oKrR4vTPefBnluRT4A9zBaAdYarzolAILGqKFBcAbo3j4D0q5W3RVc-Xg7pyHaLuYb2ev0fL95W02XUY8GY99FMdVwsq05nVel4wwEqchEKAVTzjLoALBqowyWk_KmJEwLBkwRilM0jIVyRA9nM4GHbJwQnoQO2G0DhoLykiW5HkApSfQUa6zUBcHK1tu-4KS4uhMEZwp_pwpzs4EHj3xjuu96awOSv7h_AB5uZtO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells</title><source>ACS Publications</source><creator>Eastham, Nicholas D. ; Dudnik, Alexander S. ; Aldrich, Thomas J. ; Manley, Eric F. ; Fauvell, Thomas J. ; Hartnett, Patrick E. ; Wasielewski, Michael R. ; Chen, Lin X. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Chang, Robert P. H. ; Marks, Tobin J.</creator><creatorcontrib>Eastham, Nicholas D. ; Dudnik, Alexander S. ; Aldrich, Thomas J. ; Manley, Eric F. ; Fauvell, Thomas J. ; Hartnett, Patrick E. ; Wasielewski, Michael R. ; Chen, Lin X. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Chang, Robert P. H. ; Marks, Tobin J. ; Argonne National Lab. (ANL), Argonne, IL (United States) ; Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><description>Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two high-performance polymers, semicrystalline poly­[5-(2-hexyldodecyl)-4H-thieno­[3,4-c]­pyrrole-4,6­(5H)-dione-1,3-yl-alt-4,4″dodecyl-2,2′:5′,2″-terthiophene-5,5″-diyl] (PTPD3T or D1) and amorphous poly­{4,8-bis­(5-(2-ethylhexyl)­thiophen-2-yl)­benzo­[1,2-b:4,5-b′]­dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno­[3,4-b]­thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1–A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templated by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater M n), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ∼5%, but here both A2 and PBDTT-FTTE (medium M n) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.7b00964</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE</subject><ispartof>Chemistry of materials, 2017-05, Vol.29 (10), p.4432-4444</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-22d34b5faf7fb4040250400e1da3a46edec4d6141f9b240a3ab4e4411e95b5c3</citedby><cites>FETCH-LOGICAL-a388t-22d34b5faf7fb4040250400e1da3a46edec4d6141f9b240a3ab4e4411e95b5c3</cites><orcidid>0000-0001-8228-9247 ; 0000-0001-8771-0141 ; 0000-0003-2920-5440 ; 0000000329205440 ; 0000000182289247 ; 0000000187710141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.7b00964$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.7b00964$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1406377$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eastham, Nicholas D.</creatorcontrib><creatorcontrib>Dudnik, Alexander S.</creatorcontrib><creatorcontrib>Aldrich, Thomas J.</creatorcontrib><creatorcontrib>Manley, Eric F.</creatorcontrib><creatorcontrib>Fauvell, Thomas J.</creatorcontrib><creatorcontrib>Hartnett, Patrick E.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>Melkonyan, Ferdinand S.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Chang, Robert P. H.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><title>Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two high-performance polymers, semicrystalline poly­[5-(2-hexyldodecyl)-4H-thieno­[3,4-c]­pyrrole-4,6­(5H)-dione-1,3-yl-alt-4,4″dodecyl-2,2′:5′,2″-terthiophene-5,5″-diyl] (PTPD3T or D1) and amorphous poly­{4,8-bis­(5-(2-ethylhexyl)­thiophen-2-yl)­benzo­[1,2-b:4,5-b′]­dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno­[3,4-b]­thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1–A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templated by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater M n), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ∼5%, but here both A2 and PBDTT-FTTE (medium M n) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUV1LwzAUDaLgnP4EIfjembRpu_k25qbChsPN55Kmt11GmowkFfqr_Itmbvjqy_08514OB6F7SkaUxPSRCzcSO2hb7sGO8pKQScYu0ICmMYlSQuJLNCDjSR6xPM2u0Y1ze0JooI4H6HvTcqXwyigQnQI8FQIO3ljMdYXXRvUtWPxsdJjMbO98AEstff-7nzaNhYZ7aTSe1zUI73AoV1JY47zthO8s4C20BxVAunnCn7oCG67oKrR4vTPefBnluRT4A9zBaAdYarzolAILGqKFBcAbo3j4D0q5W3RVc-Xg7pyHaLuYb2ev0fL95W02XUY8GY99FMdVwsq05nVel4wwEqchEKAVTzjLoALBqowyWk_KmJEwLBkwRilM0jIVyRA9nM4GHbJwQnoQO2G0DhoLykiW5HkApSfQUa6zUBcHK1tu-4KS4uhMEZwp_pwpzs4EHj3xjuu96awOSv7h_AB5uZtO</recordid><startdate>20170523</startdate><enddate>20170523</enddate><creator>Eastham, Nicholas D.</creator><creator>Dudnik, Alexander S.</creator><creator>Aldrich, Thomas J.</creator><creator>Manley, Eric F.</creator><creator>Fauvell, Thomas J.</creator><creator>Hartnett, Patrick E.</creator><creator>Wasielewski, Michael R.</creator><creator>Chen, Lin X.</creator><creator>Melkonyan, Ferdinand S.</creator><creator>Facchetti, Antonio</creator><creator>Chang, Robert P. H.</creator><creator>Marks, Tobin J.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8228-9247</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000-0003-2920-5440</orcidid><orcidid>https://orcid.org/0000000329205440</orcidid><orcidid>https://orcid.org/0000000182289247</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid></search><sort><creationdate>20170523</creationdate><title>Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells</title><author>Eastham, Nicholas D. ; Dudnik, Alexander S. ; Aldrich, Thomas J. ; Manley, Eric F. ; Fauvell, Thomas J. ; Hartnett, Patrick E. ; Wasielewski, Michael R. ; Chen, Lin X. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Chang, Robert P. H. ; Marks, Tobin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-22d34b5faf7fb4040250400e1da3a46edec4d6141f9b240a3ab4e4411e95b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eastham, Nicholas D.</creatorcontrib><creatorcontrib>Dudnik, Alexander S.</creatorcontrib><creatorcontrib>Aldrich, Thomas J.</creatorcontrib><creatorcontrib>Manley, Eric F.</creatorcontrib><creatorcontrib>Fauvell, Thomas J.</creatorcontrib><creatorcontrib>Hartnett, Patrick E.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>Melkonyan, Ferdinand S.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Chang, Robert P. H.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eastham, Nicholas D.</au><au>Dudnik, Alexander S.</au><au>Aldrich, Thomas J.</au><au>Manley, Eric F.</au><au>Fauvell, Thomas J.</au><au>Hartnett, Patrick E.</au><au>Wasielewski, Michael R.</au><au>Chen, Lin X.</au><au>Melkonyan, Ferdinand S.</au><au>Facchetti, Antonio</au><au>Chang, Robert P. H.</au><au>Marks, Tobin J.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-05-23</date><risdate>2017</risdate><volume>29</volume><issue>10</issue><spage>4432</spage><epage>4444</epage><pages>4432-4444</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two high-performance polymers, semicrystalline poly­[5-(2-hexyldodecyl)-4H-thieno­[3,4-c]­pyrrole-4,6­(5H)-dione-1,3-yl-alt-4,4″dodecyl-2,2′:5′,2″-terthiophene-5,5″-diyl] (PTPD3T or D1) and amorphous poly­{4,8-bis­(5-(2-ethylhexyl)­thiophen-2-yl)­benzo­[1,2-b:4,5-b′]­dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno­[3,4-b]­thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1–A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templated by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater M n), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ∼5%, but here both A2 and PBDTT-FTTE (medium M n) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.7b00964</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8228-9247</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000-0003-2920-5440</orcidid><orcidid>https://orcid.org/0000000329205440</orcidid><orcidid>https://orcid.org/0000000182289247</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2017-05, Vol.29 (10), p.4432-4444
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1406377
source ACS Publications
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
title Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Molecule%20Acceptor%20and%20Polymer%20Donor%20Crystallinity%20and%20Aggregation%20Effects%20on%20Microstructure%20Templating:%20Understanding%20Photovoltaic%20Response%20in%20Fullerene-Free%20Solar%20Cells&rft.jtitle=Chemistry%20of%20materials&rft.au=Eastham,%20Nicholas%20D.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-05-23&rft.volume=29&rft.issue=10&rft.spage=4432&rft.epage=4444&rft.pages=4432-4444&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.7b00964&rft_dat=%3Cacs_osti_%3Ea632923580%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true