Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells
Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two high-performance polymers, semicrystalline poly[5-(2-hexyldod...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2017-05, Vol.29 (10), p.4432-4444 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4444 |
---|---|
container_issue | 10 |
container_start_page | 4432 |
container_title | Chemistry of materials |
container_volume | 29 |
creator | Eastham, Nicholas D. Dudnik, Alexander S. Aldrich, Thomas J. Manley, Eric F. Fauvell, Thomas J. Hartnett, Patrick E. Wasielewski, Michael R. Chen, Lin X. Melkonyan, Ferdinand S. Facchetti, Antonio Chang, Robert P. H. Marks, Tobin J. |
description | Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two high-performance polymers, semicrystalline poly[5-(2-hexyldodecyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-1,3-yl-alt-4,4″dodecyl-2,2′:5′,2″-terthiophene-5,5″-diyl] (PTPD3T or D1) and amorphous poly{4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1–A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templated by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater M n), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ∼5%, but here both A2 and PBDTT-FTTE (medium M n) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers. |
doi_str_mv | 10.1021/acs.chemmater.7b00964 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1406377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a632923580</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-22d34b5faf7fb4040250400e1da3a46edec4d6141f9b240a3ab4e4411e95b5c3</originalsourceid><addsrcrecordid>eNqFUV1LwzAUDaLgnP4EIfjembRpu_k25qbChsPN55Kmt11GmowkFfqr_Itmbvjqy_08514OB6F7SkaUxPSRCzcSO2hb7sGO8pKQScYu0ICmMYlSQuJLNCDjSR6xPM2u0Y1ze0JooI4H6HvTcqXwyigQnQI8FQIO3ljMdYXXRvUtWPxsdJjMbO98AEstff-7nzaNhYZ7aTSe1zUI73AoV1JY47zthO8s4C20BxVAunnCn7oCG67oKrR4vTPefBnluRT4A9zBaAdYarzolAILGqKFBcAbo3j4D0q5W3RVc-Xg7pyHaLuYb2ev0fL95W02XUY8GY99FMdVwsq05nVel4wwEqchEKAVTzjLoALBqowyWk_KmJEwLBkwRilM0jIVyRA9nM4GHbJwQnoQO2G0DhoLykiW5HkApSfQUa6zUBcHK1tu-4KS4uhMEZwp_pwpzs4EHj3xjuu96awOSv7h_AB5uZtO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells</title><source>ACS Publications</source><creator>Eastham, Nicholas D. ; Dudnik, Alexander S. ; Aldrich, Thomas J. ; Manley, Eric F. ; Fauvell, Thomas J. ; Hartnett, Patrick E. ; Wasielewski, Michael R. ; Chen, Lin X. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Chang, Robert P. H. ; Marks, Tobin J.</creator><creatorcontrib>Eastham, Nicholas D. ; Dudnik, Alexander S. ; Aldrich, Thomas J. ; Manley, Eric F. ; Fauvell, Thomas J. ; Hartnett, Patrick E. ; Wasielewski, Michael R. ; Chen, Lin X. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Chang, Robert P. H. ; Marks, Tobin J. ; Argonne National Lab. (ANL), Argonne, IL (United States) ; Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><description>Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two high-performance polymers, semicrystalline poly[5-(2-hexyldodecyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-1,3-yl-alt-4,4″dodecyl-2,2′:5′,2″-terthiophene-5,5″-diyl] (PTPD3T or D1) and amorphous poly{4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1–A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templated by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater M n), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ∼5%, but here both A2 and PBDTT-FTTE (medium M n) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.7b00964</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE</subject><ispartof>Chemistry of materials, 2017-05, Vol.29 (10), p.4432-4444</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-22d34b5faf7fb4040250400e1da3a46edec4d6141f9b240a3ab4e4411e95b5c3</citedby><cites>FETCH-LOGICAL-a388t-22d34b5faf7fb4040250400e1da3a46edec4d6141f9b240a3ab4e4411e95b5c3</cites><orcidid>0000-0001-8228-9247 ; 0000-0001-8771-0141 ; 0000-0003-2920-5440 ; 0000000329205440 ; 0000000182289247 ; 0000000187710141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.7b00964$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.7b00964$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1406377$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eastham, Nicholas D.</creatorcontrib><creatorcontrib>Dudnik, Alexander S.</creatorcontrib><creatorcontrib>Aldrich, Thomas J.</creatorcontrib><creatorcontrib>Manley, Eric F.</creatorcontrib><creatorcontrib>Fauvell, Thomas J.</creatorcontrib><creatorcontrib>Hartnett, Patrick E.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>Melkonyan, Ferdinand S.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Chang, Robert P. H.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><title>Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two high-performance polymers, semicrystalline poly[5-(2-hexyldodecyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-1,3-yl-alt-4,4″dodecyl-2,2′:5′,2″-terthiophene-5,5″-diyl] (PTPD3T or D1) and amorphous poly{4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1–A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templated by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater M n), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ∼5%, but here both A2 and PBDTT-FTTE (medium M n) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUV1LwzAUDaLgnP4EIfjembRpu_k25qbChsPN55Kmt11GmowkFfqr_Itmbvjqy_08514OB6F7SkaUxPSRCzcSO2hb7sGO8pKQScYu0ICmMYlSQuJLNCDjSR6xPM2u0Y1ze0JooI4H6HvTcqXwyigQnQI8FQIO3ljMdYXXRvUtWPxsdJjMbO98AEstff-7nzaNhYZ7aTSe1zUI73AoV1JY47zthO8s4C20BxVAunnCn7oCG67oKrR4vTPefBnluRT4A9zBaAdYarzolAILGqKFBcAbo3j4D0q5W3RVc-Xg7pyHaLuYb2ev0fL95W02XUY8GY99FMdVwsq05nVel4wwEqchEKAVTzjLoALBqowyWk_KmJEwLBkwRilM0jIVyRA9nM4GHbJwQnoQO2G0DhoLykiW5HkApSfQUa6zUBcHK1tu-4KS4uhMEZwp_pwpzs4EHj3xjuu96awOSv7h_AB5uZtO</recordid><startdate>20170523</startdate><enddate>20170523</enddate><creator>Eastham, Nicholas D.</creator><creator>Dudnik, Alexander S.</creator><creator>Aldrich, Thomas J.</creator><creator>Manley, Eric F.</creator><creator>Fauvell, Thomas J.</creator><creator>Hartnett, Patrick E.</creator><creator>Wasielewski, Michael R.</creator><creator>Chen, Lin X.</creator><creator>Melkonyan, Ferdinand S.</creator><creator>Facchetti, Antonio</creator><creator>Chang, Robert P. H.</creator><creator>Marks, Tobin J.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8228-9247</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000-0003-2920-5440</orcidid><orcidid>https://orcid.org/0000000329205440</orcidid><orcidid>https://orcid.org/0000000182289247</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid></search><sort><creationdate>20170523</creationdate><title>Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells</title><author>Eastham, Nicholas D. ; Dudnik, Alexander S. ; Aldrich, Thomas J. ; Manley, Eric F. ; Fauvell, Thomas J. ; Hartnett, Patrick E. ; Wasielewski, Michael R. ; Chen, Lin X. ; Melkonyan, Ferdinand S. ; Facchetti, Antonio ; Chang, Robert P. H. ; Marks, Tobin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-22d34b5faf7fb4040250400e1da3a46edec4d6141f9b240a3ab4e4411e95b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eastham, Nicholas D.</creatorcontrib><creatorcontrib>Dudnik, Alexander S.</creatorcontrib><creatorcontrib>Aldrich, Thomas J.</creatorcontrib><creatorcontrib>Manley, Eric F.</creatorcontrib><creatorcontrib>Fauvell, Thomas J.</creatorcontrib><creatorcontrib>Hartnett, Patrick E.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>Melkonyan, Ferdinand S.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Chang, Robert P. H.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eastham, Nicholas D.</au><au>Dudnik, Alexander S.</au><au>Aldrich, Thomas J.</au><au>Manley, Eric F.</au><au>Fauvell, Thomas J.</au><au>Hartnett, Patrick E.</au><au>Wasielewski, Michael R.</au><au>Chen, Lin X.</au><au>Melkonyan, Ferdinand S.</au><au>Facchetti, Antonio</au><au>Chang, Robert P. H.</au><au>Marks, Tobin J.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-05-23</date><risdate>2017</risdate><volume>29</volume><issue>10</issue><spage>4432</spage><epage>4444</epage><pages>4432-4444</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two high-performance polymers, semicrystalline poly[5-(2-hexyldodecyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-1,3-yl-alt-4,4″dodecyl-2,2′:5′,2″-terthiophene-5,5″-diyl] (PTPD3T or D1) and amorphous poly{4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1–A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templated by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater M n), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ∼5%, but here both A2 and PBDTT-FTTE (medium M n) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.7b00964</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8228-9247</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000-0003-2920-5440</orcidid><orcidid>https://orcid.org/0000000329205440</orcidid><orcidid>https://orcid.org/0000000182289247</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2017-05, Vol.29 (10), p.4432-4444 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1406377 |
source | ACS Publications |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY MATERIALS SCIENCE |
title | Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Molecule%20Acceptor%20and%20Polymer%20Donor%20Crystallinity%20and%20Aggregation%20Effects%20on%20Microstructure%20Templating:%20Understanding%20Photovoltaic%20Response%20in%20Fullerene-Free%20Solar%20Cells&rft.jtitle=Chemistry%20of%20materials&rft.au=Eastham,%20Nicholas%20D.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-05-23&rft.volume=29&rft.issue=10&rft.spage=4432&rft.epage=4444&rft.pages=4432-4444&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.7b00964&rft_dat=%3Cacs_osti_%3Ea632923580%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |