Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High-β Plasma

Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear "interruption" of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-10, Vol.119 (15), p.155101-155101, Article 155101
Hauptverfasser: Squire, J, Kunz, M W, Quataert, E, Schekochihin, A A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155101
container_issue 15
container_start_page 155101
container_title Physical review letters
container_volume 119
creator Squire, J
Kunz, M W
Quataert, E
Schekochihin, A A
description Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear "interruption" of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB_{⊥}/B_{0}≳β^{-1/2} (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehose modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB_{⊥}/B_{0}∼β^{-1/2}. They also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.
doi_str_mv 10.1103/PhysRevLett.119.155101
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1404881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957490363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-9a5a36d1fd325353c2e832ccd27e7181297f327e5d44400daf420fc20349b2eb3</originalsourceid><addsrcrecordid>eNpNkc9qHDEMh01paDZpXyGYnnqZVLI96_FxCU0TutDQtPRovB5NxmX-bG3PQh6p17xC7nmmzrJpyUni45ME-jF2hnCOCPLjTXufvtFuTTnPwJxjWSLgK7ZA0KbQiOo1WwBILAyAPmYnKf0CABTL6g07Fga0VlIv2OZLGCgHz29DP3Uuh3FIfGx4bolfD5linLZ7uGdrF--oWPXbLuSpJn7bkovFqmt2j38G_tPtKPEwcMevwl1bPD3wm86l3r1lR43rEr17rqfsx-Wn7xdXxfrr5-uL1brw0mAujCudXNbY1FKUspReUCWF97XQpLFCYXQj576slVIAtWuUgMYLkMpsBG3kKXt_2DumHGzyIZNv_TgM5LNFBaqqcJY-HKRtHH9PlLLtQ_LUdW6gcUoWTamVAbmUs7o8qD6OKUVq7DaG3sV7i2D3IdgXIczA2EMI8-DZ841p01P9f-zf1-VfeuqGKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957490363</pqid></control><display><type>article</type><title>Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High-β Plasma</title><source>American Physical Society Journals</source><creator>Squire, J ; Kunz, M W ; Quataert, E ; Schekochihin, A A</creator><creatorcontrib>Squire, J ; Kunz, M W ; Quataert, E ; Schekochihin, A A ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><description>Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear "interruption" of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB_{⊥}/B_{0}≳β^{-1/2} (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehose modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB_{⊥}/B_{0}∼β^{-1/2}. They also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.119.155101</identifier><identifier>PMID: 29077437</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><ispartof>Physical review letters, 2017-10, Vol.119 (15), p.155101-155101, Article 155101</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-9a5a36d1fd325353c2e832ccd27e7181297f327e5d44400daf420fc20349b2eb3</citedby><cites>FETCH-LOGICAL-c391t-9a5a36d1fd325353c2e832ccd27e7181297f327e5d44400daf420fc20349b2eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29077437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1404881$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Squire, J</creatorcontrib><creatorcontrib>Kunz, M W</creatorcontrib><creatorcontrib>Quataert, E</creatorcontrib><creatorcontrib>Schekochihin, A A</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High-β Plasma</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear "interruption" of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB_{⊥}/B_{0}≳β^{-1/2} (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehose modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB_{⊥}/B_{0}∼β^{-1/2}. They also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkc9qHDEMh01paDZpXyGYnnqZVLI96_FxCU0TutDQtPRovB5NxmX-bG3PQh6p17xC7nmmzrJpyUni45ME-jF2hnCOCPLjTXufvtFuTTnPwJxjWSLgK7ZA0KbQiOo1WwBILAyAPmYnKf0CABTL6g07Fga0VlIv2OZLGCgHz29DP3Uuh3FIfGx4bolfD5linLZ7uGdrF--oWPXbLuSpJn7bkovFqmt2j38G_tPtKPEwcMevwl1bPD3wm86l3r1lR43rEr17rqfsx-Wn7xdXxfrr5-uL1brw0mAujCudXNbY1FKUspReUCWF97XQpLFCYXQj576slVIAtWuUgMYLkMpsBG3kKXt_2DumHGzyIZNv_TgM5LNFBaqqcJY-HKRtHH9PlLLtQ_LUdW6gcUoWTamVAbmUs7o8qD6OKUVq7DaG3sV7i2D3IdgXIczA2EMI8-DZ841p01P9f-zf1-VfeuqGKQ</recordid><startdate>20171012</startdate><enddate>20171012</enddate><creator>Squire, J</creator><creator>Kunz, M W</creator><creator>Quataert, E</creator><creator>Schekochihin, A A</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20171012</creationdate><title>Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High-β Plasma</title><author>Squire, J ; Kunz, M W ; Quataert, E ; Schekochihin, A A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-9a5a36d1fd325353c2e832ccd27e7181297f327e5d44400daf420fc20349b2eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Squire, J</creatorcontrib><creatorcontrib>Kunz, M W</creatorcontrib><creatorcontrib>Quataert, E</creatorcontrib><creatorcontrib>Schekochihin, A A</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Squire, J</au><au>Kunz, M W</au><au>Quataert, E</au><au>Schekochihin, A A</au><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High-β Plasma</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2017-10-12</date><risdate>2017</risdate><volume>119</volume><issue>15</issue><spage>155101</spage><epage>155101</epage><pages>155101-155101</pages><artnum>155101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear "interruption" of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB_{⊥}/B_{0}≳β^{-1/2} (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehose modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB_{⊥}/B_{0}∼β^{-1/2}. They also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>29077437</pmid><doi>10.1103/PhysRevLett.119.155101</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2017-10, Vol.119 (15), p.155101-155101, Article 155101
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1404881
source American Physical Society Journals
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
title Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High-β Plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Simulations%20of%20the%20Interruption%20of%20Large-Amplitude%20Shear-Alfv%C3%A9n%20Waves%20in%20a%20High-%CE%B2%20Plasma&rft.jtitle=Physical%20review%20letters&rft.au=Squire,%20J&rft.aucorp=Princeton%20Plasma%20Physics%20Lab.%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2017-10-12&rft.volume=119&rft.issue=15&rft.spage=155101&rft.epage=155101&rft.pages=155101-155101&rft.artnum=155101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.119.155101&rft_dat=%3Cproquest_osti_%3E1957490363%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957490363&rft_id=info:pmid/29077437&rfr_iscdi=true