Quantifying ecological memory in plant and ecosystem processes
Abstract The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understandin...
Gespeichert in:
Veröffentlicht in: | Ecology letters 2014-12, Vol.18 (3) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Ecology letters |
container_volume | 18 |
creator | Ogle, Kiona Barber, Jarrett J. Barron‐Gafford, Greg A. Bentley, Lisa Patrick Young, Jessica M. Huxman, Travis E. Loik, Michael E. Tissue, David T. Cleland, ed., Elsa |
description | Abstract
The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (
SAM
) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed
SAM
to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18–28% of response variation compared to models without antecedent effects. Moreover,
SAM
also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time‐series data and facilitating new hypothesis generation and additional research. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1401605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1401605</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_14016053</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMoWB__ENwLSRurLi6iuAoObiXc3tZIHqU3Dvl7FcTZ6Rw4Z8QyqSqZi0Jtxz8vb1M2I3oIIYvdRmZsf3lqH02bjO84QrChM6Atd-jCkLjxvLfvgWvffDIliuh4PwRAIqQFm7TaEi6_nLPV6Xg9nPNA0dQEJiLcIXiPEGuphKzEuvxregGjrzpG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying ecological memory in plant and ecosystem processes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ogle, Kiona ; Barber, Jarrett J. ; Barron‐Gafford, Greg A. ; Bentley, Lisa Patrick ; Young, Jessica M. ; Huxman, Travis E. ; Loik, Michael E. ; Tissue, David T. ; Cleland, ed., Elsa</creator><creatorcontrib>Ogle, Kiona ; Barber, Jarrett J. ; Barron‐Gafford, Greg A. ; Bentley, Lisa Patrick ; Young, Jessica M. ; Huxman, Travis E. ; Loik, Michael E. ; Tissue, David T. ; Cleland, ed., Elsa</creatorcontrib><description><![CDATA[Abstract
The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (
<styled-content style='fixed-case'>SAM</styled-content>
) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed
<styled-content style='fixed-case'>SAM</styled-content>
to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18–28% of response variation compared to models without antecedent effects. Moreover,
<styled-content style='fixed-case'>SAM</styled-content>
also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time‐series data and facilitating new hypothesis generation and additional research.]]></description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><language>eng</language><publisher>United Kingdom: Wiley-Blackwell</publisher><ispartof>Ecology letters, 2014-12, Vol.18 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1401605$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ogle, Kiona</creatorcontrib><creatorcontrib>Barber, Jarrett J.</creatorcontrib><creatorcontrib>Barron‐Gafford, Greg A.</creatorcontrib><creatorcontrib>Bentley, Lisa Patrick</creatorcontrib><creatorcontrib>Young, Jessica M.</creatorcontrib><creatorcontrib>Huxman, Travis E.</creatorcontrib><creatorcontrib>Loik, Michael E.</creatorcontrib><creatorcontrib>Tissue, David T.</creatorcontrib><creatorcontrib>Cleland, ed., Elsa</creatorcontrib><title>Quantifying ecological memory in plant and ecosystem processes</title><title>Ecology letters</title><description><![CDATA[Abstract
The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (
<styled-content style='fixed-case'>SAM</styled-content>
) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed
<styled-content style='fixed-case'>SAM</styled-content>
to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18–28% of response variation compared to models without antecedent effects. Moreover,
<styled-content style='fixed-case'>SAM</styled-content>
also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time‐series data and facilitating new hypothesis generation and additional research.]]></description><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNirsKwjAUQIMoWB__ENwLSRurLi6iuAoObiXc3tZIHqU3Dvl7FcTZ6Rw4Z8QyqSqZi0Jtxz8vb1M2I3oIIYvdRmZsf3lqH02bjO84QrChM6Atd-jCkLjxvLfvgWvffDIliuh4PwRAIqQFm7TaEi6_nLPV6Xg9nPNA0dQEJiLcIXiPEGuphKzEuvxregGjrzpG</recordid><startdate>20141219</startdate><enddate>20141219</enddate><creator>Ogle, Kiona</creator><creator>Barber, Jarrett J.</creator><creator>Barron‐Gafford, Greg A.</creator><creator>Bentley, Lisa Patrick</creator><creator>Young, Jessica M.</creator><creator>Huxman, Travis E.</creator><creator>Loik, Michael E.</creator><creator>Tissue, David T.</creator><creator>Cleland, ed., Elsa</creator><general>Wiley-Blackwell</general><scope>OTOTI</scope></search><sort><creationdate>20141219</creationdate><title>Quantifying ecological memory in plant and ecosystem processes</title><author>Ogle, Kiona ; Barber, Jarrett J. ; Barron‐Gafford, Greg A. ; Bentley, Lisa Patrick ; Young, Jessica M. ; Huxman, Travis E. ; Loik, Michael E. ; Tissue, David T. ; Cleland, ed., Elsa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_14016053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogle, Kiona</creatorcontrib><creatorcontrib>Barber, Jarrett J.</creatorcontrib><creatorcontrib>Barron‐Gafford, Greg A.</creatorcontrib><creatorcontrib>Bentley, Lisa Patrick</creatorcontrib><creatorcontrib>Young, Jessica M.</creatorcontrib><creatorcontrib>Huxman, Travis E.</creatorcontrib><creatorcontrib>Loik, Michael E.</creatorcontrib><creatorcontrib>Tissue, David T.</creatorcontrib><creatorcontrib>Cleland, ed., Elsa</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogle, Kiona</au><au>Barber, Jarrett J.</au><au>Barron‐Gafford, Greg A.</au><au>Bentley, Lisa Patrick</au><au>Young, Jessica M.</au><au>Huxman, Travis E.</au><au>Loik, Michael E.</au><au>Tissue, David T.</au><au>Cleland, ed., Elsa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying ecological memory in plant and ecosystem processes</atitle><jtitle>Ecology letters</jtitle><date>2014-12-19</date><risdate>2014</risdate><volume>18</volume><issue>3</issue><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract><![CDATA[Abstract
The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (
<styled-content style='fixed-case'>SAM</styled-content>
) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed
<styled-content style='fixed-case'>SAM</styled-content>
to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18–28% of response variation compared to models without antecedent effects. Moreover,
<styled-content style='fixed-case'>SAM</styled-content>
also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time‐series data and facilitating new hypothesis generation and additional research.]]></abstract><cop>United Kingdom</cop><pub>Wiley-Blackwell</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1461-023X |
ispartof | Ecology letters, 2014-12, Vol.18 (3) |
issn | 1461-023X 1461-0248 |
language | eng |
recordid | cdi_osti_scitechconnect_1401605 |
source | Wiley Online Library Journals Frontfile Complete |
title | Quantifying ecological memory in plant and ecosystem processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20ecological%20memory%20in%20plant%20and%20ecosystem%20processes&rft.jtitle=Ecology%20letters&rft.au=Ogle,%20Kiona&rft.date=2014-12-19&rft.volume=18&rft.issue=3&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/&rft_dat=%3Costi%3E1401605%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |