Length-Independent Charge Transport in Chimeric Molecular Wires

Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunnel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2016-11, Vol.55 (46), p.14267-14271
Hauptverfasser: Wardrip, Austin G., Mazaheripour, Amir, Hüsken, Nina, Jocson, Jonah-Micah, Bartlett, Andrew, Lopez, Robert C., Frey, Nathan, Markegard, Cade B., Kladnik, Gregor, Cossaro, Albano, Floreano, Luca, Verdini, Alberto, Burke, Anthony M., Dickson, Mary N., Kymissis, Ioannis, Cvetko, Dean, Morgante, Alberto, Sharifzadeh, Sahar, Nguyen, Hung D., Gorodetsky, Alon A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14271
container_issue 46
container_start_page 14267
container_title Angewandte Chemie (International ed.)
container_volume 55
creator Wardrip, Austin G.
Mazaheripour, Amir
Hüsken, Nina
Jocson, Jonah-Micah
Bartlett, Andrew
Lopez, Robert C.
Frey, Nathan
Markegard, Cade B.
Kladnik, Gregor
Cossaro, Albano
Floreano, Luca
Verdini, Alberto
Burke, Anthony M.
Dickson, Mary N.
Kymissis, Ioannis
Cvetko, Dean
Morgante, Alberto
Sharifzadeh, Sahar
Nguyen, Hung D.
Gorodetsky, Alon A.
description Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA‐like molecular wires. We determine that the rate of electron transfer through these constructs is independent of their length and propose a plausible mechanism to explain our findings. The reported approach holds relevance for the development of high‐performance molecular electronic components and the fundamental study of charge transport phenomena in organic semiconductors. It's down to the wire: Charge transport in self‐assembled monolayers from DNA‐inspired, perylenediimide‐based molecular wires was investigated electrochemically. The electron transfer rate for the chimeric wires was determined to be essentially independent of their length. These findings may afford new opportunities for the development of advanced molecular electronic components.
doi_str_mv 10.1002/anie.201605411
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1401020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835394793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5851-818bb51b8a1073d211d5c212b736da347c8ad959ad5952d219f3c50d18f0208a3</originalsourceid><addsrcrecordid>eNqF0Etv1DAUBWALUdFS2LJEEWzYZPD1I3ZWqBqVdsr0IVTUpeU4dzouGWdqJ4L-e1xSRogNG9uKv3usHELeAJ0BpeyjDR5njEJFpQB4Rg5AMii5Uvx5PgvOS6Ul7JOXKd1lrzWtXpB9phSImtID8mmJ4XZYl4vQ4hbzEoZivrbxFovraEPa9nEofMjf_Aajd8V536EbOxuLGx8xvSJ7K9slfP20H5Jvn4-v56fl8vJkMT9alk7m90sNumkkNNoCVbxlAK10DFijeNVaLpTTtq1lbVtZS5bv6xV3kragV5RRbfkheTfl9mnwJjk_oFu7PgR0gwFBIbOMPkxoG_v7EdNgNj457DobsB-TAc0lr4Wqeabv_6F3_RhD_oXfSlVCVFVWs0m52KcUcWW20W9sfDBAzWP_5rF_s-s_D7x9ih2bDbY7_qfwDOoJ_PAdPvwnzhxdLI7_Di-nWZ8G_LmbtfG7qRRX0txcnJjTM_Hl69VcmXP-Cxf0nY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835764466</pqid></control><display><type>article</type><title>Length-Independent Charge Transport in Chimeric Molecular Wires</title><source>Wiley Blackwell Single Titles</source><creator>Wardrip, Austin G. ; Mazaheripour, Amir ; Hüsken, Nina ; Jocson, Jonah-Micah ; Bartlett, Andrew ; Lopez, Robert C. ; Frey, Nathan ; Markegard, Cade B. ; Kladnik, Gregor ; Cossaro, Albano ; Floreano, Luca ; Verdini, Alberto ; Burke, Anthony M. ; Dickson, Mary N. ; Kymissis, Ioannis ; Cvetko, Dean ; Morgante, Alberto ; Sharifzadeh, Sahar ; Nguyen, Hung D. ; Gorodetsky, Alon A.</creator><creatorcontrib>Wardrip, Austin G. ; Mazaheripour, Amir ; Hüsken, Nina ; Jocson, Jonah-Micah ; Bartlett, Andrew ; Lopez, Robert C. ; Frey, Nathan ; Markegard, Cade B. ; Kladnik, Gregor ; Cossaro, Albano ; Floreano, Luca ; Verdini, Alberto ; Burke, Anthony M. ; Dickson, Mary N. ; Kymissis, Ioannis ; Cvetko, Dean ; Morgante, Alberto ; Sharifzadeh, Sahar ; Nguyen, Hung D. ; Gorodetsky, Alon A.</creatorcontrib><description>Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA‐like molecular wires. We determine that the rate of electron transfer through these constructs is independent of their length and propose a plausible mechanism to explain our findings. The reported approach holds relevance for the development of high‐performance molecular electronic components and the fundamental study of charge transport phenomena in organic semiconductors. It's down to the wire: Charge transport in self‐assembled monolayers from DNA‐inspired, perylenediimide‐based molecular wires was investigated electrochemically. The electron transfer rate for the chimeric wires was determined to be essentially independent of their length. These findings may afford new opportunities for the development of advanced molecular electronic components.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201605411</identifier><identifier>PMID: 27714900</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>bioinspired materials ; charge transport ; electrochemistry ; molecular wires ; organic electronics</subject><ispartof>Angewandte Chemie (International ed.), 2016-11, Vol.55 (46), p.14267-14271</ispartof><rights>2016 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5851-818bb51b8a1073d211d5c212b736da347c8ad959ad5952d219f3c50d18f0208a3</citedby><cites>FETCH-LOGICAL-c5851-818bb51b8a1073d211d5c212b736da347c8ad959ad5952d219f3c50d18f0208a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201605411$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201605411$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27714900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1401020$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wardrip, Austin G.</creatorcontrib><creatorcontrib>Mazaheripour, Amir</creatorcontrib><creatorcontrib>Hüsken, Nina</creatorcontrib><creatorcontrib>Jocson, Jonah-Micah</creatorcontrib><creatorcontrib>Bartlett, Andrew</creatorcontrib><creatorcontrib>Lopez, Robert C.</creatorcontrib><creatorcontrib>Frey, Nathan</creatorcontrib><creatorcontrib>Markegard, Cade B.</creatorcontrib><creatorcontrib>Kladnik, Gregor</creatorcontrib><creatorcontrib>Cossaro, Albano</creatorcontrib><creatorcontrib>Floreano, Luca</creatorcontrib><creatorcontrib>Verdini, Alberto</creatorcontrib><creatorcontrib>Burke, Anthony M.</creatorcontrib><creatorcontrib>Dickson, Mary N.</creatorcontrib><creatorcontrib>Kymissis, Ioannis</creatorcontrib><creatorcontrib>Cvetko, Dean</creatorcontrib><creatorcontrib>Morgante, Alberto</creatorcontrib><creatorcontrib>Sharifzadeh, Sahar</creatorcontrib><creatorcontrib>Nguyen, Hung D.</creatorcontrib><creatorcontrib>Gorodetsky, Alon A.</creatorcontrib><title>Length-Independent Charge Transport in Chimeric Molecular Wires</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA‐like molecular wires. We determine that the rate of electron transfer through these constructs is independent of their length and propose a plausible mechanism to explain our findings. The reported approach holds relevance for the development of high‐performance molecular electronic components and the fundamental study of charge transport phenomena in organic semiconductors. It's down to the wire: Charge transport in self‐assembled monolayers from DNA‐inspired, perylenediimide‐based molecular wires was investigated electrochemically. The electron transfer rate for the chimeric wires was determined to be essentially independent of their length. These findings may afford new opportunities for the development of advanced molecular electronic components.</description><subject>bioinspired materials</subject><subject>charge transport</subject><subject>electrochemistry</subject><subject>molecular wires</subject><subject>organic electronics</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0Etv1DAUBWALUdFS2LJEEWzYZPD1I3ZWqBqVdsr0IVTUpeU4dzouGWdqJ4L-e1xSRogNG9uKv3usHELeAJ0BpeyjDR5njEJFpQB4Rg5AMii5Uvx5PgvOS6Ul7JOXKd1lrzWtXpB9phSImtID8mmJ4XZYl4vQ4hbzEoZivrbxFovraEPa9nEofMjf_Aajd8V536EbOxuLGx8xvSJ7K9slfP20H5Jvn4-v56fl8vJkMT9alk7m90sNumkkNNoCVbxlAK10DFijeNVaLpTTtq1lbVtZS5bv6xV3kragV5RRbfkheTfl9mnwJjk_oFu7PgR0gwFBIbOMPkxoG_v7EdNgNj457DobsB-TAc0lr4Wqeabv_6F3_RhD_oXfSlVCVFVWs0m52KcUcWW20W9sfDBAzWP_5rF_s-s_D7x9ih2bDbY7_qfwDOoJ_PAdPvwnzhxdLI7_Di-nWZ8G_LmbtfG7qRRX0txcnJjTM_Hl69VcmXP-Cxf0nY4</recordid><startdate>20161107</startdate><enddate>20161107</enddate><creator>Wardrip, Austin G.</creator><creator>Mazaheripour, Amir</creator><creator>Hüsken, Nina</creator><creator>Jocson, Jonah-Micah</creator><creator>Bartlett, Andrew</creator><creator>Lopez, Robert C.</creator><creator>Frey, Nathan</creator><creator>Markegard, Cade B.</creator><creator>Kladnik, Gregor</creator><creator>Cossaro, Albano</creator><creator>Floreano, Luca</creator><creator>Verdini, Alberto</creator><creator>Burke, Anthony M.</creator><creator>Dickson, Mary N.</creator><creator>Kymissis, Ioannis</creator><creator>Cvetko, Dean</creator><creator>Morgante, Alberto</creator><creator>Sharifzadeh, Sahar</creator><creator>Nguyen, Hung D.</creator><creator>Gorodetsky, Alon A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20161107</creationdate><title>Length-Independent Charge Transport in Chimeric Molecular Wires</title><author>Wardrip, Austin G. ; Mazaheripour, Amir ; Hüsken, Nina ; Jocson, Jonah-Micah ; Bartlett, Andrew ; Lopez, Robert C. ; Frey, Nathan ; Markegard, Cade B. ; Kladnik, Gregor ; Cossaro, Albano ; Floreano, Luca ; Verdini, Alberto ; Burke, Anthony M. ; Dickson, Mary N. ; Kymissis, Ioannis ; Cvetko, Dean ; Morgante, Alberto ; Sharifzadeh, Sahar ; Nguyen, Hung D. ; Gorodetsky, Alon A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5851-818bb51b8a1073d211d5c212b736da347c8ad959ad5952d219f3c50d18f0208a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>bioinspired materials</topic><topic>charge transport</topic><topic>electrochemistry</topic><topic>molecular wires</topic><topic>organic electronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wardrip, Austin G.</creatorcontrib><creatorcontrib>Mazaheripour, Amir</creatorcontrib><creatorcontrib>Hüsken, Nina</creatorcontrib><creatorcontrib>Jocson, Jonah-Micah</creatorcontrib><creatorcontrib>Bartlett, Andrew</creatorcontrib><creatorcontrib>Lopez, Robert C.</creatorcontrib><creatorcontrib>Frey, Nathan</creatorcontrib><creatorcontrib>Markegard, Cade B.</creatorcontrib><creatorcontrib>Kladnik, Gregor</creatorcontrib><creatorcontrib>Cossaro, Albano</creatorcontrib><creatorcontrib>Floreano, Luca</creatorcontrib><creatorcontrib>Verdini, Alberto</creatorcontrib><creatorcontrib>Burke, Anthony M.</creatorcontrib><creatorcontrib>Dickson, Mary N.</creatorcontrib><creatorcontrib>Kymissis, Ioannis</creatorcontrib><creatorcontrib>Cvetko, Dean</creatorcontrib><creatorcontrib>Morgante, Alberto</creatorcontrib><creatorcontrib>Sharifzadeh, Sahar</creatorcontrib><creatorcontrib>Nguyen, Hung D.</creatorcontrib><creatorcontrib>Gorodetsky, Alon A.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wardrip, Austin G.</au><au>Mazaheripour, Amir</au><au>Hüsken, Nina</au><au>Jocson, Jonah-Micah</au><au>Bartlett, Andrew</au><au>Lopez, Robert C.</au><au>Frey, Nathan</au><au>Markegard, Cade B.</au><au>Kladnik, Gregor</au><au>Cossaro, Albano</au><au>Floreano, Luca</au><au>Verdini, Alberto</au><au>Burke, Anthony M.</au><au>Dickson, Mary N.</au><au>Kymissis, Ioannis</au><au>Cvetko, Dean</au><au>Morgante, Alberto</au><au>Sharifzadeh, Sahar</au><au>Nguyen, Hung D.</au><au>Gorodetsky, Alon A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Length-Independent Charge Transport in Chimeric Molecular Wires</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2016-11-07</date><risdate>2016</risdate><volume>55</volume><issue>46</issue><spage>14267</spage><epage>14271</epage><pages>14267-14271</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA‐like molecular wires. We determine that the rate of electron transfer through these constructs is independent of their length and propose a plausible mechanism to explain our findings. The reported approach holds relevance for the development of high‐performance molecular electronic components and the fundamental study of charge transport phenomena in organic semiconductors. It's down to the wire: Charge transport in self‐assembled monolayers from DNA‐inspired, perylenediimide‐based molecular wires was investigated electrochemically. The electron transfer rate for the chimeric wires was determined to be essentially independent of their length. These findings may afford new opportunities for the development of advanced molecular electronic components.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27714900</pmid><doi>10.1002/anie.201605411</doi><tpages>5</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2016-11, Vol.55 (46), p.14267-14271
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1401020
source Wiley Blackwell Single Titles
subjects bioinspired materials
charge transport
electrochemistry
molecular wires
organic electronics
title Length-Independent Charge Transport in Chimeric Molecular Wires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Length-Independent%20Charge%20Transport%20in%20Chimeric%20Molecular%20Wires&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Wardrip,%20Austin%20G.&rft.date=2016-11-07&rft.volume=55&rft.issue=46&rft.spage=14267&rft.epage=14271&rft.pages=14267-14271&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201605411&rft_dat=%3Cproquest_osti_%3E1835394793%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835764466&rft_id=info:pmid/27714900&rfr_iscdi=true