Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfate-reducing bacterial lipids in cocultures and methane seeps

Correlation between hydrogen isotope fractionation in fatty acids and carbon metabolism in pure cultures of bacteria indicates the potential of biomarker D/H analysis as a tool for diagnosing carbon substrate usage in environmental samples. However, most environments, in particular anaerobic habitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geobiology 2015-09, Vol.13 (5), p.462-477
Hauptverfasser: Dawson, K. S., Osburn, M. R., Sessions, A. L., Orphan, V. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 5
container_start_page 462
container_title Geobiology
container_volume 13
creator Dawson, K. S.
Osburn, M. R.
Sessions, A. L.
Orphan, V. J.
description Correlation between hydrogen isotope fractionation in fatty acids and carbon metabolism in pure cultures of bacteria indicates the potential of biomarker D/H analysis as a tool for diagnosing carbon substrate usage in environmental samples. However, most environments, in particular anaerobic habitats, are built from metabolic networks of micro‐organisms rather than a single organism. The effect of these networks on D/H of lipids has not been explored and may complicate the interpretation of these analyses. Syntrophy represents an extreme example of metabolic interdependence. Here, we analyzed the effect of metabolic interactions on the D/H biosignatures of sulfate‐reducing bacteria (SRB) using both laboratory maintained cocultures of the methanogen Methanosarcina acetivorans and the SRB Desulfococcus multivorans in addition to environmental samples harboring uncultured syntrophic consortia of anaerobic methane‐oxidizing archaea (ANME) and sulfate‐reducing Deltaproteobacteria (SRB) recovered from deep‐sea methane seeps. Consistent with previously reported trends, we observed a ~80‰ range in hydrogen isotope fractionation (εlipid–water) for D. multivorans grown under different carbon assimilation conditions, with more D‐enriched values associated with heterotrophic growth. In contrast, for cocultures of D. multivorans with M. acetivorans, we observed a reduced range of εlipid–water values (~36‰) across substrates with shifts of up to 61‰ compared to monocultures. Sediment cores from methane seep settings in Hydrate Ridge (offshore Oregon, USA) showed similar D‐enrichment in diagnostic SRB fatty acids coinciding with peaks in ANME/SRB consortia concentration suggesting that metabolic associations are connected to the observed shifts in εlipid–water values.
doi_str_mv 10.1111/gbi.12140
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1400922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705077080</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5440-b79dd009a495c144175494ec90019c5754197a6c9a51dd551dcda4bec541ac103</originalsourceid><addsrcrecordid>eNqNkUGP1CAYhhujcdfVg3_AEL3oobtAoQxHHXXcZNXEaOZIKHydsnZKBeo6v8S_KzPdnYOJiRyALzzvywdvUTwl-JzkcbFp3DmhhOF7xSlhgpasruX9416Ik-JRjNcYU8Yr8rA4oVzSqubytPj9EZJufO8M0jF643RyfojoxqUO6WA6DRrZ4H4Cip1rU0RuQN3OBr-BAbnokx8BtUGbve4g3hNx6ludoAxgJ-OGDWoyAMHpHvVudPZgY7yZ-jQFiEgPFm0hdXrI9wCM8XHxoNV9hCe361nx7f27r8sP5dXn1eXy9VWpOWO4bIS0FmOpmeSGMEYEZ5KBkRgTaXiuiBS6NlJzYi3Pk7GaNWDygTYEV2fF89nXx-RUNC6B6YwfBjBJ5R_FktIMvZyhMfgfE8Skti4a6Pvcrp-iIgJzLARe4P9BcVXxSoiMvvgLvfZTGPJrFanlQvIFFYtMvZopE3yMAVo1BrfVYacIVvv0VU5fHdLP7LNbx6nZgj2Sd3Fn4GIGblwPu387qdWbyzvLcla4mODXUaHDd1WLSnC1_rRS6y9LTsnbtaLVHyvSyQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698958278</pqid></control><display><type>article</type><title>Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfate-reducing bacterial lipids in cocultures and methane seeps</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dawson, K. S. ; Osburn, M. R. ; Sessions, A. L. ; Orphan, V. J.</creator><creatorcontrib>Dawson, K. S. ; Osburn, M. R. ; Sessions, A. L. ; Orphan, V. J.</creatorcontrib><description>Correlation between hydrogen isotope fractionation in fatty acids and carbon metabolism in pure cultures of bacteria indicates the potential of biomarker D/H analysis as a tool for diagnosing carbon substrate usage in environmental samples. However, most environments, in particular anaerobic habitats, are built from metabolic networks of micro‐organisms rather than a single organism. The effect of these networks on D/H of lipids has not been explored and may complicate the interpretation of these analyses. Syntrophy represents an extreme example of metabolic interdependence. Here, we analyzed the effect of metabolic interactions on the D/H biosignatures of sulfate‐reducing bacteria (SRB) using both laboratory maintained cocultures of the methanogen Methanosarcina acetivorans and the SRB Desulfococcus multivorans in addition to environmental samples harboring uncultured syntrophic consortia of anaerobic methane‐oxidizing archaea (ANME) and sulfate‐reducing Deltaproteobacteria (SRB) recovered from deep‐sea methane seeps. Consistent with previously reported trends, we observed a ~80‰ range in hydrogen isotope fractionation (εlipid–water) for D. multivorans grown under different carbon assimilation conditions, with more D‐enriched values associated with heterotrophic growth. In contrast, for cocultures of D. multivorans with M. acetivorans, we observed a reduced range of εlipid–water values (~36‰) across substrates with shifts of up to 61‰ compared to monocultures. Sediment cores from methane seep settings in Hydrate Ridge (offshore Oregon, USA) showed similar D‐enrichment in diagnostic SRB fatty acids coinciding with peaks in ANME/SRB consortia concentration suggesting that metabolic associations are connected to the observed shifts in εlipid–water values.</description><identifier>ISSN: 1472-4677</identifier><identifier>EISSN: 1472-4669</identifier><identifier>DOI: 10.1111/gbi.12140</identifier><identifier>PMID: 25923659</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Archaea ; Bacteria ; Deltaproteobacteria - growth &amp; development ; Deltaproteobacteria - metabolism ; Desulfococcus multivorans ; Deuterium - analysis ; Hydrogen - analysis ; Lipid Metabolism ; Lipids - chemistry ; Methanosarcina - growth &amp; development ; Methanosarcina - metabolism ; Methanosarcina acetivorans ; Microbial Consortia ; Oregon ; Seawater - microbiology</subject><ispartof>Geobiology, 2015-09, Vol.13 (5), p.462-477</ispartof><rights>2015 John Wiley &amp; Sons Ltd</rights><rights>2015 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5440-b79dd009a495c144175494ec90019c5754197a6c9a51dd551dcda4bec541ac103</citedby><cites>FETCH-LOGICAL-a5440-b79dd009a495c144175494ec90019c5754197a6c9a51dd551dcda4bec541ac103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgbi.12140$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgbi.12140$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25923659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1400922$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dawson, K. S.</creatorcontrib><creatorcontrib>Osburn, M. R.</creatorcontrib><creatorcontrib>Sessions, A. L.</creatorcontrib><creatorcontrib>Orphan, V. J.</creatorcontrib><title>Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfate-reducing bacterial lipids in cocultures and methane seeps</title><title>Geobiology</title><addtitle>Geobiology</addtitle><description>Correlation between hydrogen isotope fractionation in fatty acids and carbon metabolism in pure cultures of bacteria indicates the potential of biomarker D/H analysis as a tool for diagnosing carbon substrate usage in environmental samples. However, most environments, in particular anaerobic habitats, are built from metabolic networks of micro‐organisms rather than a single organism. The effect of these networks on D/H of lipids has not been explored and may complicate the interpretation of these analyses. Syntrophy represents an extreme example of metabolic interdependence. Here, we analyzed the effect of metabolic interactions on the D/H biosignatures of sulfate‐reducing bacteria (SRB) using both laboratory maintained cocultures of the methanogen Methanosarcina acetivorans and the SRB Desulfococcus multivorans in addition to environmental samples harboring uncultured syntrophic consortia of anaerobic methane‐oxidizing archaea (ANME) and sulfate‐reducing Deltaproteobacteria (SRB) recovered from deep‐sea methane seeps. Consistent with previously reported trends, we observed a ~80‰ range in hydrogen isotope fractionation (εlipid–water) for D. multivorans grown under different carbon assimilation conditions, with more D‐enriched values associated with heterotrophic growth. In contrast, for cocultures of D. multivorans with M. acetivorans, we observed a reduced range of εlipid–water values (~36‰) across substrates with shifts of up to 61‰ compared to monocultures. Sediment cores from methane seep settings in Hydrate Ridge (offshore Oregon, USA) showed similar D‐enrichment in diagnostic SRB fatty acids coinciding with peaks in ANME/SRB consortia concentration suggesting that metabolic associations are connected to the observed shifts in εlipid–water values.</description><subject>Archaea</subject><subject>Bacteria</subject><subject>Deltaproteobacteria - growth &amp; development</subject><subject>Deltaproteobacteria - metabolism</subject><subject>Desulfococcus multivorans</subject><subject>Deuterium - analysis</subject><subject>Hydrogen - analysis</subject><subject>Lipid Metabolism</subject><subject>Lipids - chemistry</subject><subject>Methanosarcina - growth &amp; development</subject><subject>Methanosarcina - metabolism</subject><subject>Methanosarcina acetivorans</subject><subject>Microbial Consortia</subject><subject>Oregon</subject><subject>Seawater - microbiology</subject><issn>1472-4677</issn><issn>1472-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUGP1CAYhhujcdfVg3_AEL3oobtAoQxHHXXcZNXEaOZIKHydsnZKBeo6v8S_KzPdnYOJiRyALzzvywdvUTwl-JzkcbFp3DmhhOF7xSlhgpasruX9416Ik-JRjNcYU8Yr8rA4oVzSqubytPj9EZJufO8M0jF643RyfojoxqUO6WA6DRrZ4H4Cip1rU0RuQN3OBr-BAbnokx8BtUGbve4g3hNx6ludoAxgJ-OGDWoyAMHpHvVudPZgY7yZ-jQFiEgPFm0hdXrI9wCM8XHxoNV9hCe361nx7f27r8sP5dXn1eXy9VWpOWO4bIS0FmOpmeSGMEYEZ5KBkRgTaXiuiBS6NlJzYi3Pk7GaNWDygTYEV2fF89nXx-RUNC6B6YwfBjBJ5R_FktIMvZyhMfgfE8Skti4a6Pvcrp-iIgJzLARe4P9BcVXxSoiMvvgLvfZTGPJrFanlQvIFFYtMvZopE3yMAVo1BrfVYacIVvv0VU5fHdLP7LNbx6nZgj2Sd3Fn4GIGblwPu387qdWbyzvLcla4mODXUaHDd1WLSnC1_rRS6y9LTsnbtaLVHyvSyQA</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Dawson, K. S.</creator><creator>Osburn, M. R.</creator><creator>Sessions, A. L.</creator><creator>Orphan, V. J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QL</scope><scope>7TN</scope><scope>C1K</scope><scope>OTOTI</scope></search><sort><creationdate>201509</creationdate><title>Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfate-reducing bacterial lipids in cocultures and methane seeps</title><author>Dawson, K. S. ; Osburn, M. R. ; Sessions, A. L. ; Orphan, V. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5440-b79dd009a495c144175494ec90019c5754197a6c9a51dd551dcda4bec541ac103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Archaea</topic><topic>Bacteria</topic><topic>Deltaproteobacteria - growth &amp; development</topic><topic>Deltaproteobacteria - metabolism</topic><topic>Desulfococcus multivorans</topic><topic>Deuterium - analysis</topic><topic>Hydrogen - analysis</topic><topic>Lipid Metabolism</topic><topic>Lipids - chemistry</topic><topic>Methanosarcina - growth &amp; development</topic><topic>Methanosarcina - metabolism</topic><topic>Methanosarcina acetivorans</topic><topic>Microbial Consortia</topic><topic>Oregon</topic><topic>Seawater - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, K. S.</creatorcontrib><creatorcontrib>Osburn, M. R.</creatorcontrib><creatorcontrib>Sessions, A. L.</creatorcontrib><creatorcontrib>Orphan, V. J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><jtitle>Geobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, K. S.</au><au>Osburn, M. R.</au><au>Sessions, A. L.</au><au>Orphan, V. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfate-reducing bacterial lipids in cocultures and methane seeps</atitle><jtitle>Geobiology</jtitle><addtitle>Geobiology</addtitle><date>2015-09</date><risdate>2015</risdate><volume>13</volume><issue>5</issue><spage>462</spage><epage>477</epage><pages>462-477</pages><issn>1472-4677</issn><eissn>1472-4669</eissn><abstract>Correlation between hydrogen isotope fractionation in fatty acids and carbon metabolism in pure cultures of bacteria indicates the potential of biomarker D/H analysis as a tool for diagnosing carbon substrate usage in environmental samples. However, most environments, in particular anaerobic habitats, are built from metabolic networks of micro‐organisms rather than a single organism. The effect of these networks on D/H of lipids has not been explored and may complicate the interpretation of these analyses. Syntrophy represents an extreme example of metabolic interdependence. Here, we analyzed the effect of metabolic interactions on the D/H biosignatures of sulfate‐reducing bacteria (SRB) using both laboratory maintained cocultures of the methanogen Methanosarcina acetivorans and the SRB Desulfococcus multivorans in addition to environmental samples harboring uncultured syntrophic consortia of anaerobic methane‐oxidizing archaea (ANME) and sulfate‐reducing Deltaproteobacteria (SRB) recovered from deep‐sea methane seeps. Consistent with previously reported trends, we observed a ~80‰ range in hydrogen isotope fractionation (εlipid–water) for D. multivorans grown under different carbon assimilation conditions, with more D‐enriched values associated with heterotrophic growth. In contrast, for cocultures of D. multivorans with M. acetivorans, we observed a reduced range of εlipid–water values (~36‰) across substrates with shifts of up to 61‰ compared to monocultures. Sediment cores from methane seep settings in Hydrate Ridge (offshore Oregon, USA) showed similar D‐enrichment in diagnostic SRB fatty acids coinciding with peaks in ANME/SRB consortia concentration suggesting that metabolic associations are connected to the observed shifts in εlipid–water values.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25923659</pmid><doi>10.1111/gbi.12140</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1472-4677
ispartof Geobiology, 2015-09, Vol.13 (5), p.462-477
issn 1472-4677
1472-4669
language eng
recordid cdi_osti_scitechconnect_1400922
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Archaea
Bacteria
Deltaproteobacteria - growth & development
Deltaproteobacteria - metabolism
Desulfococcus multivorans
Deuterium - analysis
Hydrogen - analysis
Lipid Metabolism
Lipids - chemistry
Methanosarcina - growth & development
Methanosarcina - metabolism
Methanosarcina acetivorans
Microbial Consortia
Oregon
Seawater - microbiology
title Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfate-reducing bacterial lipids in cocultures and methane seeps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20associations%20with%20archaea%20drive%20shifts%20in%20hydrogen%20isotope%20fractionation%20in%20sulfate-reducing%20bacterial%20lipids%20in%20cocultures%20and%20methane%20seeps&rft.jtitle=Geobiology&rft.au=Dawson,%20K.%20S.&rft.date=2015-09&rft.volume=13&rft.issue=5&rft.spage=462&rft.epage=477&rft.pages=462-477&rft.issn=1472-4677&rft.eissn=1472-4669&rft_id=info:doi/10.1111/gbi.12140&rft_dat=%3Cproquest_osti_%3E1705077080%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698958278&rft_id=info:pmid/25923659&rfr_iscdi=true