Water Oxidation by Ruthenium Complexes Incorporating Multifunctional Bipyridyl Diphosphonate Ligands

We describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox‐potential leveling through charge compensation and σ donation to allo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2016-07, Vol.128 (28), p.8199-8203
Hauptverfasser: Xie, Yan, Shaffer, David W., Lewandowska-Andralojc, Anna, Szalda, David J., Concepcion, Javier J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox‐potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH‐dependent electrochemistry associated with deprotonation of the phosphonic acid groups. The position of these groups allows them to shuttle protons in and out of the catalytic site and reduce activation barriers. A mechanism for water oxidation by these catalysts is proposed on the basis of experimental results and DFT calculations. The unprecedented attack of water at a neutral six‐coordinate [RuIV] center to yield an anionic seven‐coordinate [RuIV−OH]− intermediate is one of the key steps of a single‐site mechanism in which all species are anionic or neutral. These complexes are among the fastest single‐site catalysts reported to date. Barrieren niederreißen: Bipyridyldiphosphonat‐Liganden ermöglichen die Steuerung von Redoxpotentialen durch Ladungskompensation und σ‐Donorwirkung und machen bei Ruthenium‐basierten Wasseroxidationskatalysatoren hohe Oxidationszustände zugänglich (siehe Struktur; L=Picolin oder Isochinolin). Sie transportieren außerdem Protonen hin zum und weg vom katalytischen Zentrum und senken so die Aktivierungsbarrieren für den protonengekoppelten Elektronentransfer.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201601943