Enabling forbidden dark matter

The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, 3→2 annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2017-10, Vol.96 (8), Article 083521
Hauptverfasser: Cline, James M., Liu, Hongwan, Slatyer, Tracy R., Xue, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D
container_volume 96
creator Cline, James M.
Liu, Hongwan
Slatyer, Tracy R.
Xue, Wei
description The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, 3→2 annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the 3→2 process is allowed; we call this scenario not-forbidden dark matter. We illustrate this mechanism for a vector-portal dark matter model, showing that for a dark matter mass of mχ∼MeV−10 GeV, 3→2 processes not only lead to the observed relic density, but also imply a self-interaction cross section that can solve the cusp/core problem. This can be accomplished while remaining consistent with stringent CMB constraints on light dark matter, and can potentially be discovered at future direct detection experiments.
doi_str_mv 10.1103/PhysRevD.96.083521
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1400426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125764097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-5fb8924dd38b3a91a1b3c1ebccf3f25dd924eac5169790b08271e853d7f421093</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-AQ8S9Jw4s5tsskep9QMKiuh52U-b2iZ1dyv03xuJepoX5uFl5iHkHKFABHb9vDrEF_d1WwheQMMqikdkQssacgAqjv8zwimZxbiGIXIQNeKEXCw6pTdt9575PujWWtdlVoWPbKtScuGMnHi1iW72O6fk7W7xOn_Il0_3j_ObZW5YQ1Need0IWlrLGs2UQIWaGXTaGM88rawdlk6ZCrmoBWhoaI2uqZitfUkRBJuSy7G3j6mV0bTJmZXpu86ZJLEEKCkfoKsR2oX-c-9ikut-H7rhLkmRVjUvh6cGio6UCX2MwXm5C-1WhYNEkD--5J8vKbgcfbFvxM1ctw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125764097</pqid></control><display><type>article</type><title>Enabling forbidden dark matter</title><source>American Physical Society Journals</source><creator>Cline, James M. ; Liu, Hongwan ; Slatyer, Tracy R. ; Xue, Wei</creator><creatorcontrib>Cline, James M. ; Liu, Hongwan ; Slatyer, Tracy R. ; Xue, Wei ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, 3→2 annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the 3→2 process is allowed; we call this scenario not-forbidden dark matter. We illustrate this mechanism for a vector-portal dark matter model, showing that for a dark matter mass of mχ∼MeV−10 GeV, 3→2 processes not only lead to the observed relic density, but also imply a self-interaction cross section that can solve the cusp/core problem. This can be accomplished while remaining consistent with stringent CMB constraints on light dark matter, and can potentially be discovered at future direct detection experiments.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.96.083521</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Dark matter ; Density ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Physical review. D, 2017-10, Vol.96 (8), Article 083521</ispartof><rights>Copyright American Physical Society Oct 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-5fb8924dd38b3a91a1b3c1ebccf3f25dd924eac5169790b08271e853d7f421093</citedby><cites>FETCH-LOGICAL-c382t-5fb8924dd38b3a91a1b3c1ebccf3f25dd924eac5169790b08271e853d7f421093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1400426$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cline, James M.</creatorcontrib><creatorcontrib>Liu, Hongwan</creatorcontrib><creatorcontrib>Slatyer, Tracy R.</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Enabling forbidden dark matter</title><title>Physical review. D</title><description>The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, 3→2 annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the 3→2 process is allowed; we call this scenario not-forbidden dark matter. We illustrate this mechanism for a vector-portal dark matter model, showing that for a dark matter mass of mχ∼MeV−10 GeV, 3→2 processes not only lead to the observed relic density, but also imply a self-interaction cross section that can solve the cusp/core problem. This can be accomplished while remaining consistent with stringent CMB constraints on light dark matter, and can potentially be discovered at future direct detection experiments.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Dark matter</subject><subject>Density</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsNT-AQ8S9Jw4s5tsskep9QMKiuh52U-b2iZ1dyv03xuJepoX5uFl5iHkHKFABHb9vDrEF_d1WwheQMMqikdkQssacgAqjv8zwimZxbiGIXIQNeKEXCw6pTdt9575PujWWtdlVoWPbKtScuGMnHi1iW72O6fk7W7xOn_Il0_3j_ObZW5YQ1Need0IWlrLGs2UQIWaGXTaGM88rawdlk6ZCrmoBWhoaI2uqZitfUkRBJuSy7G3j6mV0bTJmZXpu86ZJLEEKCkfoKsR2oX-c-9ikut-H7rhLkmRVjUvh6cGio6UCX2MwXm5C-1WhYNEkD--5J8vKbgcfbFvxM1ctw</recordid><startdate>20171020</startdate><enddate>20171020</enddate><creator>Cline, James M.</creator><creator>Liu, Hongwan</creator><creator>Slatyer, Tracy R.</creator><creator>Xue, Wei</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20171020</creationdate><title>Enabling forbidden dark matter</title><author>Cline, James M. ; Liu, Hongwan ; Slatyer, Tracy R. ; Xue, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-5fb8924dd38b3a91a1b3c1ebccf3f25dd924eac5169790b08271e853d7f421093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Dark matter</topic><topic>Density</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cline, James M.</creatorcontrib><creatorcontrib>Liu, Hongwan</creatorcontrib><creatorcontrib>Slatyer, Tracy R.</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cline, James M.</au><au>Liu, Hongwan</au><au>Slatyer, Tracy R.</au><au>Xue, Wei</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling forbidden dark matter</atitle><jtitle>Physical review. D</jtitle><date>2017-10-20</date><risdate>2017</risdate><volume>96</volume><issue>8</issue><artnum>083521</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, 3→2 annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the 3→2 process is allowed; we call this scenario not-forbidden dark matter. We illustrate this mechanism for a vector-portal dark matter model, showing that for a dark matter mass of mχ∼MeV−10 GeV, 3→2 processes not only lead to the observed relic density, but also imply a self-interaction cross section that can solve the cusp/core problem. This can be accomplished while remaining consistent with stringent CMB constraints on light dark matter, and can potentially be discovered at future direct detection experiments.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.96.083521</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2017-10, Vol.96 (8), Article 083521
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1400426
source American Physical Society Journals
subjects ASTRONOMY AND ASTROPHYSICS
Dark matter
Density
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
title Enabling forbidden dark matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20forbidden%20dark%20matter&rft.jtitle=Physical%20review.%20D&rft.au=Cline,%20James%20M.&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2017-10-20&rft.volume=96&rft.issue=8&rft.artnum=083521&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.96.083521&rft_dat=%3Cproquest_osti_%3E2125764097%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125764097&rft_id=info:pmid/&rfr_iscdi=true